994 resultados para Nylon-6


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the isothermal, and nonisothermal crystallization kinetics of Nylon-11 is carried out using differential scanning calorimetry. The Avrami equation and that modified by Jeziorny can describe the primary stage of isothermal and nonisothermal crystallization of Nylon-11. In the isothermal crystallization process, the mechanism of spherulitic nucleation and growth are discussed; the lateral and folding surface free energies determined from the Lauritzen-Hoffman equation are sigma = 10.68 erg/cm(2) and sigma(e) = 110.62 erg/cm(2); and the work of chain folding q = 7.61 Kcal/mol. In the nonisothermal crystallization process, Ozawa analysis failed to describe the crystallization behavior of Nylon-ii. Combining the Avrami and Ozawa equations, we obtain a new and convenient method to analyze the nonisothermal crystallization kinetics of Nylon-11; in the meantime, the activation energies are determined to be -394.56 and 328.37 KJ/mol in isothermal and nonisothermal crystallization process from the Arrhonius form and the Kissinger method. (C) 1998 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic voltammetry and in-situ microscopic FTIR spectroelectrochemistry were used for the electrochemical and vibrational characterizations of the reduction process of K3Fe (CN)(6) in polyethylene glycol(PEG) with LiClO4 as supporting electrolyte at a Pt microelectrode. The rate of electron transfer is a function of the concentration of the supporting electrolyte. The redox potentials and cyclic voltammetric currents vary with Li/O molar ratio. The bl-situ spectroelectrochemistry shows that the infrared spectra are influenced by the concentration of LiClO4. The bridging cyanide groups with a structure Fe-I-C drop N ... Fe-I-C drop N are formed during the reduction process of K3Fe (CN)(6). There may be an activated complex between the Lif cation and the complex anion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal crystallization and melting behavior of nylon 66 and its blends with poly(ether imide) (PEI) were investigated by differential scanning calorimetry. Crystallization kinetics such as overall rate constant Z and index n were calculated according to Avrami approach. Crystallization in the blend was retarded with respect to that of pure nylon 66 by incorporation of PEI with high glass transition temperature (T-g). The lowest growth rate of the spherulites was observed in the blends containing 10 and 15 wt% fraction of PEI. A transition temperature where positively birefringent spherulites disappear and negative birefringent spherulites develop was measured by thermal analysis. The transition temperature increased with content of PEI in the blends. A suitable range of isothermally crystallization temperatures, 238.5-246 degrees C, is suggested For determining the equilibrium melting points by means of Hoffman-Weeks approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic radical salt (DBTTF)(6)PMo12O40 . 2H(2)O was synthesized by electrocrystallization and characterized by IR spectrum, electronic spectrum and ESR technology, Its magnetic property, conductivity and crystal structure were determined. The title compound crystallized in a triclinic system with P1 space group, a = 1.378 7(7), b = 1.420 4 (2), c = 1.570 2(2) nm, alpha = 104.57(1)degrees, beta = 103.41(2)degrees, gamma = 95.80(2)degrees, V = 2.853(2) nm(3) Z = 1 and a final R = 0.072 7.