999 resultados para Nuclear fuel rods.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two different realistic potentials, these sum rules are studied for Greens functions that are derived self-consistently within the T matrix approximation at finite temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however, rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100-132Sn are presented for demonstration purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron and proton single-particle spectral functions in asymmetric nuclear matter fulfill energy-weighted sum rules. The validity of these sum rules within the self-consistent Green's function approach is investigated. The various contributions to these sum rules and their convergence as a function of energy provide information about correlations induced by the realistic interaction between the nucleons. The study of the sum rules in asymmetric nuclear matter exhibits the isospin dependence of the nucleon-nucleon correlations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The remarkable difference between the nuclear quadrupole frequencies v_Q of Cu(1) and Cu(2) in YBa_2Cu_3O_6 and YBa_2Cu_3O_7 is analyzed. We calculate the ionic contribution to the electric field gradients and estimate, by using experimental results for Cu_2O and La_2CuO_4, the contribution of the d valence electrons. Thus, we determine v_Q1, v_Q2, and the asymmetry parameter η for YBa_2Cu_3O_6 and YBa_2Cu_3O_7. The number of holes in dthe Cu-O planes and chains is found to be important for the different behavior of v_Q1 and v_Q2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energies of muonic X-rays of the K-series of carbon, nitrogen and oxygen have been measured with an accuracy of about 15 eV. Root mean square radii of the nuclear charge distributions were deduced. The results 2.49±0.05 fm for carbon, 2.55 ±0.03 fm for nitrogen and 2.71 ±0.02 fm for oxygen are in good agreement at comparable accuracy with recent electron scattering data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical scattering cross section of two colliding nuclei at intermediate and relativistic energies is reevaluated. The influence of retardation and magnetic field effects is taken into account. Corrections due to electron screening as well as due to attractive nuclear forces are discussed. This paper represents an addendum to [l].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I have investigated the effect of the nuclear motion on the energy eigenvalues in muonic atoms. In addition to the usually used reduced-mass correction, I have calculated the relativistic influences including the magnetic and retardation interaction between the nucleus and the muon for the inner orbitals of muonic atoms.