992 resultados para Normalized discounted cumulative gain (NDCG)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropical Cyclones are a continuing threat to life and property. Willoughby (2012) found that a Pareto (power-law) cumulative distribution fitted to the most damaging 10% of US hurricane seasons fit their impacts well. Here, we find that damage follows a Pareto distribution because the assets at hazard follow a Zipf distribution, which can be thought of as a Pareto distribution with exponent 1. The Z-CAT model is an idealized hurricane catastrophe model that represents a coastline where populated places with Zipf- distributed assets are randomly scattered and damaged by virtual hurricanes with sizes and intensities generated through a Monte-Carlo process. Results produce realistic Pareto exponents. The ability of the Z-CAT model to simulate different climate scenarios allowed testing of sensitivities to Maximum Potential Intensity, landfall rates and building structure vulnerability. The Z-CAT model results demonstrate that a statistical significant difference in damage is found when only changes in the parameters create a doubling of damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixing regime of the upper 180 m of a mesoscale eddy in the vicinity of the Antarctic Polar Front at 47° S and 21° E was investigated during the R.V. Polarstern cruise ANT-XVIII/2 within the scope of the iron fertilization experiment EisenEx. On the basis of hydrographic CTD and ADCP profiles we deduced the vertical diffusivity Kz from two different parameterizations. Since these parameterizations bear the character of empirical functions, based on theoretical and idealized assumptions, they were inter alia compared with Cox-number and Thorpe-scale related diffusivities deduced from microstructure measurements, which supplied the first direct insights into turbulence of this ocean region. Values of Kz in the range of 10**-4 - 10**-3 m**2/s appear as a rather robust estimate of vertical diffusivity within the seasonal pycnocline. Values in the mixed layer above are more variable in time and reach 10**-1 m**2/s during periods of strong winds. The results confirm a close agreement between the microstructure-based eddy diffusivities and eddy diffusivities calculated after the parameterization of Pacanowski and Philander [1981, Journal of Physical Oceanography 11, 1443-1451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2].