998 resultados para Normal approximation
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD database over the period 1981 to 2003 than Normally distributed risk models, which mirrors results in the U.S. and Australia using identical methodology. Real estate investment risk is heteroscedastic, but the Characteristic Exponent of the investment risk function is constant across time yet may vary by property type. Asset diversification is far less effective at reducing the impact of non-systematic investment risk on real estate portfolios than in the case of assets with Normally distributed investment risk. Multi-risk factor portfolio allocation models based on measures of investment codependence from finite-variance statistics are ineffectual in the real estate context.
Resumo:
This work provides a framework for the approximation of a dynamic system of the form x˙=f(x)+g(x)u by dynamic recurrent neural network. This extends previous work in which approximate realisation of autonomous dynamic systems was proven. Given certain conditions, the first p output neural units of a dynamic n-dimensional neural model approximate at a desired proximity a p-dimensional dynamic system with n>p. The neural architecture studied is then successfully implemented in a nonlinear multivariable system identification case study.
Resumo:
The problem of adjusting the weights (learning) in multilayer feedforward neural networks (NN) is known to be of a high importance when utilizing NN techniques in various practical applications. The learning procedure is to be performed as fast as possible and in a simple computational fashion, the two requirements which are usually not satisfied practically by the methods developed so far. Moreover, the presence of random inaccuracies are usually not taken into account. In view of these three issues, an alternative stochastic approximation approach discussed in the paper, seems to be very promising.
Resumo:
Models of normal word production are well specified about the effects of frequency of linguistic stimuli on lexical access, but are less clear regarding the same effects on later stages of word production, particularly word articulation. In aphasia, this lack of specificity of down-stream frequency effects is even more noticeable because there is relatively limited amount of data on the time course of frequency effects for this population. This study begins to fill this gap by comparing the effects of variation of word frequency (lexical, whole word) and bigram frequency (sub-lexical, within word) on word production abilities in ten normal speakers and eight mild–moderate individuals with aphasia. In an immediate repetition paradigm, participants repeated single monosyllabic words in which word frequency (high or low) was crossed with bigram frequency (high or low). Indices for mapping the time course for these effects included reaction time (RT) for linguistic processing and motor preparation, and word duration (WD) for speech motor performance (word articulation time). The results indicated that individuals with aphasia had significantly longer RT and WD compared to normal speakers. RT showed a significant main effect only for word frequency (i.e., high-frequency words had shorter RT). WD showed significant main effects of word and bigram frequency; however, contrary to our expectations, high-frequency items had longer WD. Further investigation of WD revealed that independent of the influence of word and bigram frequency, vowel type (tense or lax) had the expected effect on WD. Moreover, individuals with aphasia differed from control speakers in their ability to implement tense vowel duration, even though they could produce an appropriate distinction between tense and lax vowels. The results highlight the importance of using temporal measures to identify subtle deficits in linguistic and speech motor processing in aphasia, the crucial role of phonetic characteristics of stimuli set in studying speech production and the need for the language production models to account more explicitly for word articulation.