999 resultados para Nonlinear PDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain with its highly complex structure made up of simple units,imterconnected information pathways and specialized functions has always been an object of mystery and sceintific fascination for physiologists,neuroscientists and lately to mathematicians and physicists. The stream of biophysicists are engaged in building the bridge between the biological and physical sciences guided by a conviction that natural scenarios that appear extraordinarily complex may be tackled by application of principles from the realm of physical sciences. In a similar vein, this report aims to describe how nerve cells execute transmission of signals ,how these are put together and how out of this integration higher functions emerge and get reflected in the electrical signals that are produced in the brain.Viewing the E E G Signal through the looking glass of nonlinear theory, the dynamics of the underlying complex system-the brain ,is inferred and significant implications of the findings are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International School of Photonics, Cochin University of Science & Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear optical processes in organic compounds have attracted considerable interest in the field of science and technology because of their compelling technological promises in fields of optical communication,computing,switching and signal processing.As a result of the synthesis of novel organic compounds with varying degree of nonlinear optical strength, many practical devices based on these are getting realised giving new theoretical insights into the nonolinear optical behaviour of materials.Organic compounds like phthalocyanines and porphyrins have evoked great deal of interest in the field of photonic technology.The present thesis describes the results obtained from the investigations carried out on the nonlinear optical properties of certain organo-metallic compounds using Z-Scan and DFWM techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal lensing effect was studied in aqueous solutions of rhodamine B using 532 nm, 9 ns pulses from a Nd:YAG laser. A low intensity He-Ne laser beam was used for probing the thermal lens. Results obtained show that it is appropriate to use this technique for studying nonlinear absorption processes like two photon absorption or excited state absorption and for analyzing dimerization equilibria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual-beam transient thermal lens studies were carried out in aqueous solutions of rhodamine 6G using 532 nm pulses from a frequency-doubled Nd:YAG laser. The analysis of the observed data showed that the thermal lens method can effectively be utilized to study the nonlinear absorption and aggregation which are taking place in a dye medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed photoacoustic measurements have been carried out in toluene at 532 nm wavelength using a Q-switched frequency doubled Nd:YAG laser. The variation of photoacoustic signal amplitude with incident laser power indicates that at lower laser powers one photon absorption takes place at this wavelength while a clear two photon absorption occurs in this liquid at higher laser powers. The studies made here demonstrate that pulsed photoacoustic technique is simple and effective for the investigation of multiphoton processes in liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.