999 resultados para Non-markovian
Resumo:
Background: Non-invasive monitoring of respiratory muscle function is an area of increasing research interest, resulting in the appearance of new monitoring devices, one of these being piezoelectric contact sensors. The present study was designed to test whether the use of piezoelectric contact (non-invasive) sensors could be useful in respiratory monitoring, in particular in measuring the timing of diaphragmatic contraction.Methods: Experiments were performed in an animal model: three pentobarbital anesthetized mongrel dogs. The motion of the thoracic cage was acquired by means of a piezoelectric contact sensor placed on the costal wall. This signal is compared with direct measurements of the diaphragmatic muscle length, made by sonomicrometry. Furthermore, to assess the diaphragmatic function other respiratory signals were acquired: respiratory airflow and transdiaphragmatic pressure. Diaphragm contraction time was estimated with these four signals. Using diaphragm length signal as reference, contraction times estimated with the other three signals were compared with the contraction time estimated with diaphragm length signal.Results: The contraction time estimated with the TM signal tends to give a reading 0.06 seconds lower than the measure made with the DL signal (-0.21 and 0.00 for FL and DP signals, respectively), with a standard deviation of 0.05 seconds (0.08 and 0.06 for FL and DP signals, respectively). Correlation coefficients indicated a close link between time contraction estimated with TM signal and contraction time estimated with DL signal (a Pearson correlation coefficient of 0.98, a reliability coefficient of 0.95, a slope of 1.01 and a Spearman's rank-order coefficient of 0.98). In general, correlation coefficients and mean and standard deviation of the difference were better in the inspiratory load respiratory test than in spontaneous ventilation tests.Conclusion: The technique presented in this work provides a non-invasive method to assess the timing of diaphragmatic contraction in canines, using a piezoelectric contact sensor placed on the costal wall.
Resumo:
In the context of fading channels it is well established that, with a constrained transmit power, the bit rates achievable by signals that are not peaky vanish as the bandwidth grows without bound. Stepping back from the limit, we characterize the highest bit rate achievable by such non-peaky signals and the approximate bandwidth where that apex occurs. As it turns out, the gap between the highest rate achievable without peakedness and the infinite-bandwidth capacity (with unconstrained peakedness) is small for virtually all settings of interest to wireless communications. Thus, although strictly achieving capacity in wideband fading channels does require signal peakedness, bit rates not far from capacity can be achieved with conventional signaling formats that do not exhibit the serious practical drawbacks associated with peakedness. In addition, we show that the asymptotic decay of bit rate in the absence of peakedness usually takes hold at bandwidths so large that wideband fading models are called into question. Rather, ultrawideband models ought to be used.
Resumo:
BACKGROUND: The clinical profile and outcome of nosocomial and non-nosocomial health care-associated native valve endocarditis are not well defined. OBJECTIVE: To compare the characteristics and outcomes of community-associated and nosocomial and non-nosocomial health care-associated native valve endocarditis. DESIGN: Prospective cohort study. SETTING: 61 hospitals in 28 countries. PATIENTS: Patients with definite native valve endocarditis and no history of injection drug use who were enrolled in the ICE-PCS (International Collaboration on Endocarditis Prospective Cohort Study) from June 2000 to August 2005. MEASUREMENTS: Clinical and echocardiographic findings, microbiology, complications, and mortality. RESULTS: Health care-associated native valve endocarditis was present in 557 (34%) of 1622 patients (303 with nosocomial infection [54%] and 254 with non-nosocomial infection [46%]). Staphylococcus aureus was the most common cause of health care-associated infection (nosocomial, 47%; non-nosocomial, 42%; P = 0.30); a high proportion of patients had methicillin-resistant S. aureus (nosocomial, 57%; non-nosocomial, 41%; P = 0.014). Fewer patients with health care-associated native valve endocarditis had cardiac surgery (41% vs. 51% of community-associated cases; P < 0.001), but more of the former patients died (25% vs. 13%; P < 0.001). Multivariable analysis confirmed greater mortality associated with health care-associated native valve endocarditis (incidence risk ratio, 1.28 [95% CI, 1.02 to 1.59]). LIMITATIONS: Patients were treated at hospitals with cardiac surgery programs. The results may not be generalizable to patients receiving care in other types of facilities or to those with prosthetic valves or past injection drug use. CONCLUSION: More than one third of cases of native valve endocarditis in non-injection drug users involve contact with health care, and non-nosocomial infection is common, especially in the United States. Clinicians should recognize that outpatients with extensive out-of-hospital health care contacts who develop endocarditis have clinical characteristics and outcomes similar to those of patients with nosocomial infection. PRIMARY FUNDING SOURCE: None.
Resumo:
We study the minimum mean square error (MMSE) and the multiuser efficiency η of large dynamic multiple access communication systems in which optimal multiuser detection is performed at the receiver as the number and the identities of active users is allowed to change at each transmission time. The system dynamics are ruled by a Markov model describing the evolution of the channel occupancy and a large-system analysis is performed when the number of observations grow large. Starting on the equivalent scalar channel and the fixed-point equation tying multiuser efficiency and MMSE, we extend it to the case of a dynamic channel, and derive lower and upper bounds for the MMSE (and, thus, for η as well) holding true in the limit of large signal–to–noise ratios and increasingly large observation time T.
Resumo:
Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2)) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.
Resumo:
In this work we present the results of experimental work on the development of lexical class-based lexica by automatic means. Our purpose is to assess the use of linguistic lexical-class based information as a feature selection methodology for the use of classifiers in quick lexical development. The results show that the approach can help reduce the human effort required in the development of language resources significantly.
Resumo:
Changes in expression and function of voltage-gated sodium channels (VGSC) in dorsal root ganglion (DRG) neurons may play a major role in the genesis of peripheral hyperexcitability that occurs in neuropathic pain. We present here the first description of changes induced by spared nerve injury (SNI) to Na(v)1 mRNA levels and tetrodotoxin-sensitive and -resistant (TTX-S/TTX-R) Na(+) currents in injured and adjacent non-injured small DRG neurons. VGSC transcripts were down-regulated in injured neurons except for Na(v)1.3, which increased, while they were either unchanged or increased in non-injured neurons. TTX-R current densities were reduced in injured neurons and the voltage dependence of steady-state inactivation for TTX-R was positively shifted in injured and non-injured neurons. TTX-S current densities were not affected by SNI, while the rate of recovery from inactivation was accelerated in injured neurons. Our results describe altered neuronal electrogenesis following SNI that is likely induced by a complex regulation of VGSCs.