999 resultados para NITROGEN-MINERALIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flux of nitrogen (N) to coastal marine ecosystems is strongly correlated with the “net anthropogenic nitrogen inputs” (NANI) to the landscape across 154 watersheds, ranging in size from 16 km2 to 279 000 km2, in the US and Europe. When NANI values are greater than 1070 kg N km−2 yr−1, an average of 25% of the NANI is exported from those watersheds in rivers. Our analysis suggests a possible threshold at lower NANI levels, with a smaller fraction exported when NANI values are below 1070 kg N km−2 yr−1. Synthetic fertilizer is the largest component of NANI in many watersheds, but other inputs also contribute substantially to the N fluxes; in some regions, atmospheric deposition of N is the major component. The flux of N to coastal areas is controlled in part by climate, and a higher percentage of NANI is exported in rivers, from watersheds that have higher freshwater discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to determine the response of in vitro fermentation parameters to incremental levels of polyethylene glycol (PEG) when tanniniferous tree fruits (Dichrostachys cinerea, Acacia erioloba, A. erubiscens, A. nilotica and Piliostigma thonningii) were fermented using the Reading Pressure Technique. The trivalent ytterbium precipitable phenolics content of fruit substrates ranged from 175 g/kg DM in A. erubiscens to 607 g/kg DM in A. nilotica, while the soluble condensed tannin content ranged from 0.09 AU550nm/40mg in A. erioloba to 0.52 AU550nm/40 mg in D. cinerea. The ADF was highest in P. thonningii fruits (402 g/kg DM) and lowest in A. nilotica fruits (165 g/kg DM). Increasing the level of PEG caused an exponential rise to a maximum (asymptotic) for cumulative gas production, rate of gas production and nitrogen degradability in all substrates except P. thonningii fruits. Dry matter degradability for fruits containing higher levels of soluble condensed tannins (D. cinerea and P. thonningii), showed little response to incremental levels of PEG after incubation for 24 h. The minimum levels of PEG required to maximize in vitro fermentation of tree fruits was found to be 200 mg PEG/g DM of sample for all tree species except A. erubiscens fruits, which required 100 mg PEG/g DM sample. The study provides evidence that PEG levels lower than 1 g/g DM sample can be used for in vitro tannin bioassays to reduce the cost of evaluating non-conventional tanniniferous feedstuffs used in developing countries in the tropics and subtopics. The use of in vitro nitrogen degradability in place of the favoured dry matter degradability improved the accuracy of PEG as a diagnostic tool for tannins in in vitro fermentation systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uranium series dating has been carried out on secondary uranyl silicate minerals formed during sub-glacial and post-glacial weathering of Proterozoic uraninite ores in south west Finland. The samples were obtained from two sites adjacent to the Salpauselkä III ice marginal formation and cover a range of depths, from the surface to more than 60 m. Measured ages fall into three distinct groups, 70–100 ka, 28–36 ka and < 2500 yr. The youngest set is associated with surface exposures and the crystals display clear evidence of re-working. The most likely trigger for uranium release at depths below the surface weathering zone is intrusion of oxidising glacial melt water. The latter is often characterised by very high discharge rates along channels, which close once the overpressure generated at the ice margin is released. There is excellent correspondence between the two Finnish sites and published data for similar deposits over a large area of southern and central Sweden. None of the seventy samples analysed gave a U–Th age between 40 and 70 ka; a second hiatus is apparent at 20 ka, coinciding with the Last Glacial Maximum. Thus, the process responsible for uranyl silicate formation was halted for significant periods, owing to a change in geochemical conditions or the hydrogeological regime. These data support the presence of interstadial conditions during the Early and Middle Weichselian since in the absence of major climatic perturbations the uranium phases at depth are stable. When viewed in conjunction with proxy data from mammoth remains it would appear that the region was ice-free prior to the Last Glacial Maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal driver of nitrogen (N) losses from the body including excretion and secretion in milk is N intake. However, other covariates may also play a role in modifying the partitioning of N. This study tests the hypothesis that N partitioning in dairy cows is affected by energy and protein interactions. A database containing 470 dairy cow observations was collated from calorimetry experiments. The data include N and energy parameters of the diet and N utilization by the animal. Univariate and multivariate meta-analyses that considered both within and between study effects were conducted to generate prediction equations based on N intake alone or with an energy component. The univariate models showed that there was a strong positive linear relationships between N intake and N excretion in faeces, urine and milk. The slopes were 0.28 faeces N, 0.38 urine N and 0.20 milk N. Multivariate model analysis did not improve the fit. Metabolizable energy intake had a significant positive effect on the amount of milk N in proportion to faeces and urine N, which is also supported by other studies. Another measure of energy considered as a covariate to N intake was diet quality or metabolizability (the concentration of metabolizable energy relative to gross energy of the diet). Diet quality also had a positive linear relationship with the proportion of milk N relative to N excreted in faeces and urine. Metabolizability had the largest effect on faeces N due to lower protein digestibility of low quality diets. Urine N was also affected by diet quality and the magnitude of the effect was higher than for milk N. This research shows that including a measure of diet quality as a covariate with N intake in a model of N execration can enhance our understanding of the effects of diet composition on N losses from dairy cows. The new prediction equations developed in this study could be used to monitor N losses from dairy systems.