995 resultados para NEURAL RETINA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boolean input systems are in common used in the electric industry. Power supplies include such systems and the power converter represents these. For instance, in power electronics, the control variable are the switching ON and OFF of components as thyristors or transistors. The purpose of this paper is to use neural network (NN) to control continuous systems with Boolean inputs. This method is based on classification of system variations associated with input configurations. The classical supervised backpropagation algorithm is used to train the networks. The training of the artificial neural network and the control of Boolean input systems are presented. The design procedure of control systems is implemented on a nonlinear system. We apply those results to control an electrical system composed of an induction machine and its power converter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified radial basis function (RBF) neural network and its identification algorithm based on observational data with heterogeneous noise are introduced. The transformed system output of Box-Cox is represented by the RBF neural network. To identify the model from observational data, the singular value decomposition of the full regression matrix consisting of basis functions formed by system input data is initially carried out and a new fast identification method is then developed using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator (MLE) for a model base spanned by the largest eigenvectors. Finally, the Box-Cox transformation-based RBF neural network, with good generalisation and sparsity, is identified based on the derived optimal Box-Cox transformation and an orthogonal forward regression algorithm using a pseudo-PRESS statistic to select a sparse RBF model with good generalisation. The proposed algorithm and its efficacy are demonstrated with numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient episodes of synchronisation of neuronal activity in particular frequency ranges are thought to underlie cognition. Empirical mode decomposition phase locking (EMDPL) analysis is a method for determining the frequency and timing of phase synchrony that is adaptive to intrinsic oscillations within data, alleviating the need for arbitrary bandpass filter cut-off selection. It is extended here to address the choice of reference electrode and removal of spurious synchrony resulting from volume conduction. Spline Laplacian transformation and independent component analysis (ICA) are performed as pre-processing steps, and preservation of phase synchrony between synthetic signals. combined using a simple forward model, is demonstrated. The method is contrasted with use of bandpass filtering following the same preprocessing steps, and filter cut-offs are shown to influence synchrony detection markedly. Furthermore, an approach to the assessment of multiple EEG trials using the method is introduced, and the assessment of statistical significance of phase locking episodes is extended to render it adaptive to local phase synchrony levels. EMDPL is validated in the analysis of real EEG data, during finger tapping. The time course of event-related (de)synchronisation (ERD/ERS) is shown to differ from that of longer range phase locking episodes, implying different roles for these different types of synchronisation. It is suggested that the increase in phase locking which occurs just prior to movement, coinciding with a reduction in power (or ERD) may result from selection of the neural assembly relevant to the particular movement. (C) 2009 Elsevier B.V. All rights reserved.