993 resultados para Minimal Models
Resumo:
Using numerical diagonalization we study the crossover among different random matrix ensembles (Poissonian, Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic ensemble (GSE)) realized in two different microscopic models. The specific diagnostic tool used to study the crossovers is the level spacing distribution. The first model is a one-dimensional lattice model of interacting hard-core bosons (or equivalently spin 1/2 objects) and the other a higher dimensional model of non-interacting particles with disorder and spin-orbit coupling. We find that the perturbation causing the crossover among the different ensembles scales to zero with system size as a power law with an exponent that depends on the ensembles between which the crossover takes place. This exponent is independent of microscopic details of the perturbation. We also find that the crossover from the Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE associated with symmetry breaking introduces a subdominant contribution. We also conjecture that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the dimensionality of the system.
Resumo:
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
Motivated by the recent proposal for the S-matrix in AdS(3) x S-3 with mixed three form fluxes, we study classical folded string spinning in AdS(3) with both Ramond and Neveu-Schwarz three form fluxes. We solve the equations of motion of these strings and obtain their dispersion relation to the leading order in the Neveu-Schwarz flux b. We show that dispersion relation for the spinning strings with large spin S acquires a term given by -root lambda/2 pi b(2) log(2) S in addition to the usual root lambda/pi log S term where root lambda is proportional to the square of the radius of AdS(3). Using SO(2, 2) transformations and re-parmetrizations we show that these spinning strings can be related to light like Wilson loops in AdS(3) with Neveu-Schwarz flux b. We observe that the logarithmic divergence in the area of the light like Wilson loop is also deformed by precisely the same coefficient of the b(2) log(2) S term in the dispersion relation of the spinning string. This result indicates that the coefficient of b(2) log(2) S has a property similar to the coefficient of the log S term, known as cusp-anomalous dimension, and can possibly be determined to all orders in the coupling lambda using the recent proposal for the S-matrix.