994 resultados para Microcontroller-based


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible design concept is a relatively new trend in airport terminal design which is believed to facilitate the ever changing needs of a terminal. Current architectural design processes become more complex every day because of the introduction of new building technologies where the concept of flexible airport terminal would apparently make the design process even more complex. Previous studies have demonstrated that ever growing aviation industry requires airport terminals to be planned, designed and constructed in such a way that should allow flexibility in design process. In order to adopt the philosophy of ‘design for flexibility’ architects need to address a wide range of differing needs. An appropriate integration of the process models, prior to the airport terminal design process, is expected to uncover the relationships that exist between spatial layout and their corresponding functions. The current paper seeks to develop a way of sharing space adjacency related information obtained from the Business Process Models (BPM) to assist in defining flexible airport terminal layouts. Critical design parameters are briefly investigated at this stage of research whilst reviewing the available design alternatives and an evaluation framework is proposed in the current paper. Information obtained from various design layouts should assist in identifying and defining flexible design matrices allowing architects to interpret and to apply those throughout the lifecycle of the terminal building.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured WO3 thin films have been prepared by thermal evaporation to detect hydrogen at low temperatures. The influence of heat treatment on the physical, chemical and electronic properties of these films has been investigated. The films were annealed at 400oC for 2 hours in air. AFM and TEM analysis revealed that the as-deposited WO3 film is high amorphous and made up of cluster of particles. Annealing at 400oC for 2 hours in air resulted in very fine grain size of the order of 5 nm and porous structure. GIXRD and Raman analysis revealed that annealing improved the crystallinity of WO3 film. Gas sensors based on annealed WO3 films have shown a high response towards various concentrations (10-10000 ppm) H2 at an operating temperature of 150oC. The improved sensing performance at low operating temperature is due to the optimum physical, chemical and electronic properties achieved in the WO3 film through annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitability of Role Based Access Control (RBAC) is being challenged in dynamic environments like healthcare. In an RBAC system, a user's legitimate access may be denied if their need has not been anticipated by the security administrator at the time of policy specification. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. The heart of the challenge is the intrinsic unpredictability of users' operational needs as well as their incentives to misuse permissions. In this paper we propose a novel Budget-aware Role Based Access Control (B-RBAC) model that extends RBAC with the explicit notion of budget and cost, where users are assigned a limited budget through which they pay for the cost of permissions they need. We propose a model where the value of resources are explicitly defined and an RBAC policy is used as a reference point to discriminate the price of access permissions, as opposed to representing hard and fast rules for making access decisions. This approach has several desirable properties. It enables users to acquire unassigned permissions if they deem them necessary. However, users misuse capability is always bounded by their allocated budget and is further adjustable through the discrimination of permission prices. Finally, it provides a uniform mechanism for the detection and prevention of misuses.