996 resultados para Metric Linear Combinations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relation of weight to height, length and breadth in the Indian backwater oyster Crassostrea madrasensis (Preston) is reported. The relative importance of the variables on weight was found to be height, length and breadth in their order of preference. The multiple regression V = -0.4017 + 0.46743 X + 0.8278 Y + 0.1130 Z can be used to estimate the meat weight (logarithm) for given dimensions of length, height and breadth (all in logarithms). An exponential relation between weight and height is also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global stability of confined uniform density wakes is studied numerically, using two-dimensional linear global modes and nonlinear direct numerical simulations. The wake inflow velocity is varied between different amounts of co-flow (base bleed). In accordance with previous studies, we find that the frequencies of both the most unstable linear and the saturated nonlinear global mode increase with confinement. For wake Reynolds number Re = 100 we find the confinement to be stabilising, decreasing the growth rate of the linear and the saturation amplitude of the nonlinear modes. The dampening effect is connected to the streamwise development of the base flow, and decreases for more parallel flows at higher Re. The linear analysis reveals that the critical wake velocities are almost identical for unconfined and confined wakes at Re ≈ 400. Further, the results are compared with literature data for an inviscid parallel wake. The confined wake is found to be more stable than its inviscid counterpart, whereas the unconfined wake is more unstable than the inviscid wake. The main reason for both is the base flow development. A detailed comparison of the linear and nonlinear results reveals that the most unstable linear global mode gives in all cases an excellent prediction of the initial nonlinear behaviour and therefore the stability boundary. However, the nonlinear saturated state is different, mainly for higher Re. For Re = 100, the saturated frequency differs less than 5% from the linear frequency, and trends regarding confinement observed in the linear analysis are confirmed.