995 resultados para Menta (Planta)
Resumo:
INTRODUCCIÓN: Durante su evolución, las plantas han desarrollado un sistema químico de defensa con el fin de combatir el estrés del medio ambiente utilizando sus metabolitos secundarios. De todos los productos químicos secundarios sintetizados por las plantas, los terpenos han contribuido significativamente al desarrollo de nuevos compuestos y son producidos por una gran variedad de plantas, algunos animales (insectos y organismos marinos) y microorganismos. Son abundantes en frutas, cereales, verduras y flores, en musgos, algas y líquenes y son un componente importante de las resinas de las plantas, constituyendo uno de los grupos más amplios de fitonutrientes. Los terpenos son los principales componentes de los aceites esenciales de las plantas aromáticas y tienen gran actividad biológica y actúan como antioxidantes protegiendo los lípidos del ataque de radicales libres de especies del oxígeno, como oxígeno singlete, y radicales hidroxilo, peróxido y superóxido. OBJETIVO GENERAL. Determinar la composición química del aceite esencial de S. areira y la actividad anti-oxidante de la fracción rica en terpenos hidrocarburos y sus componentes mayoritarios, en un modelo experimental de pulmón de ratón. OBJETIVOS ESPECÍFICOS: a) Obtener el aceite esencial a partir de hojas de S. areira; b) Identificar y cuantificar los terpenos presentes en el aceite esencial de S. areira; c) Separar la fracción mayoritaria del aceite esencial (AE) (terpenos hidrocarburos); d)Detectar a nivel pulmonar los posibles efectos anti-oxidante de la administración intraperitoneal (i.p.) de la fracción de hidrocarburos obtenidas del aceite esencial de S. areira y de sus componentes mayoritarios, en un modelo inflamatorio. MATERIALES Y METODOS: 1) Obtención de las muestras de S. areira: Serán recolectada en la localidad de Mendiolaza, Córdoba. Un ejemplar de la misma será depositado en el Museo Botánico de la Fac. Cs. Ex. Fís. y Nat., UNC.2) Obtención del AE: El material vegetal será obtenido por destilación por arrastre por vapor de agua en un equipo tipo Clevenger modificado. 3) Fraccionamiento AE: Se separará la fracción mayoritaria del aceite que corresponde a la de los terpenos hidrocarburos con el fin de determinar su actividad biológica. Dicha separación se llevará a cabo por cromatografía en placa delgada (CCD) utilizando n-hexano o cloroformo como sistema de solvente para la fase móvil. También se determinará la actividad de los compuestos mayoritarios, los cuales serán obtenidos de muestras comerciales (ICN Pharmaceuticals) y para el caso de los que no estén disponibles en el comercio, serán aislados por técnicas cromatográficas. 4) Identificación y cuantificación de los terpenos del AE:Para la cuantificación de los terpenos, se realizará un análisis por cromatografía gas-liquido-espectrometría de masas (GC-MS) empleando un equipo Perkin Elmer Q600 equipado con detector de ionización de llama, con una columna capilar Elite-wax (Crossband-PEG) (60m x 0. 25 mm ID x 0. 25 µm df). La interpretación de los espectros de masas se realizará utilizando una biblioteca Adamns, NIST y por comparación con espectros similares tomados de bibliografía. 5) Inducción de inflamación con LPS y tratamiento con una fracción del AE de S. areira: Se procederá a la instilación nasal de LPS (1,67µg/Kg de peso corporal) y a las 2hs, la administración intraperitoneal de la fracción hidrocarbonada de AE (300 mg/Kg) y se determinará a las 3hs: TNF-α; infiltrado celular y dienos conjugados en muestras obtenidas en lavado bronqueo-alveolar en pulmón de ratón. 6) Genotoxidad: Se utilizará Allium cepa L. para evaluar aberraciones cromosómicas. Estadística : Se analizarán los datos con ANAVA: no paramétrico con Kruskal Wallis y Dunn a posterior (InfoStat, 2010). De los resultados se espera obtener un perfil químico de los terpenos hidrocarbonados de S. areira y evaluar su posible acción antioxidante.
Resumo:
Se indagará principalmente acerca del rol de los procesos neutrales, como la deriva génica, de procesos selectivos, como la selección natural mediada por polinizadores y de procesos históricos (geológicos y climáticos del pasado) en la diversificación floral tanto a escala microevolutiva como macroevolutiva. La heterogeneidad ambiental que se presenta en amplios rangos geográficos puede promover la diferenciación entre poblaciones debido a las diferencias en condiciones físicas y biológicas. De esta manera, especies ampliamente distribuidas ofrecen la oportunidad de explorar la dinámica de los procesos evolutivos que tienen lugar a nivel interpoblacional (Dobzhansky 1970, Thompson 1999). El estudio comparativo entre especies hermanas permite comprender cómo la selección natural (adaptación) y la inercia filogenética (herencia ancestral) han modelado los rasgos de las especies que observamos en la actualidad (Díaz 2002, Schluter 2000, Futuyma 2005). Uno de los usos más importantes de la información filogenética es el de reconstruir la historia del cambio evolutivo en caracteres adaptativos mediante su mapeo en la filogenia y la reconstrucción del estado de estos caracteres en el ancestro. Así, la asociación entre transición de caracteres y transiciones en grupos funcionales es una evidencia directa de la hipótesis adaptativa de que los rasgos son seleccionados por grupos funcionales de polinizadores. Una aproximación filogenética puede permitir identificar la dirección y el tiempo de evolución. Todos estos aspectos señalan la necesidad de adoptar una perspectiva conceptualmente integrada (morfológica, genética, filogenética, filogeográfica y ecológica) en el estudio de la biología evolutiva de las flores. Estudiar como actúan los procesos micro- y macroevolutivos en las interacciones planta-polinizador, en una dimensión espacial y temporal, arrojará resultados importantes tanto en el campo teórico como en el de la conservación. Por una parte, permitirá poner a prueba hipótesis relevantes sobre la adaptación de caracteres, mientras que explorará los procesos evolutivos que subyacen a las tramas de las interacciones planta-polinizador; por otro lado, comprender el rol de los cambios climáticos pasados en la diversificación biológica es interesante tanto desde una aproximación evolutiva como desde la biología de la conservación (Avise 2000; Moritz et al. 2000; Petit et al. 2003; Hewitt 2004). Géneros a ser estudiados en este proyecto: 1- Anarthrophyllum (Fabaceae,15 spp), 2- Monttea (Plantaginaceae, 3 spp), 3- Caleolaria (Calceolariaceae 3 spp), 4- Centris (Apidae, 1 spp), 5- Jaborosa (Solanaceae, 23 spp). Metodología: Mapeado de las poblaciones. Elenco de polinizadores, frecuencia. Obtención y medición de caracteres fenotípicos florales. Néctar: concentración y vol. Aceites (peso); Morfometría geométrica (Zelditch et al. 2005). Éxito reproductivo (Dafni & Kevan 2003). Caracteres genéticos: extracción, amplificación y secuenciación: en Calceolaria se utilizarán 2 genes de cloroplasto trnH-psbA y trnS-trnG y genes anónimos nucleares de copia única (scnADN), para Jaborosa se utilizarán 3 genes de cloroplasto (trnH-psbA, TrnD-trnT y ndhF-rp32) y el gen nuclear GBSSI waxy. Finalmente para Centris cineraria se usaría el tRNA ILE y NADH Deshidrogenada subunidad 2. Análisis filogenéticos de parsimonia (Goloboff et al. 2000, Kitching et al. 1998, Nixon 2002, Farris et al. 1996, Sorenson 1999); Filogeografía: reconstrucción de redes por parsimonia (Clement et al. 2000; Posada et al. 2000), análisis de clados anidados (NCPA). Se usarán las claves de inferencia (Templeton 2004). Para todos estos análisis se utilizarán los siguientes programas: DnaSP, Network, Arlequin, MrBayes, Paup, ModelTest, Beast, TNT, WinClada TCS y GeoDis. Estadística multivariada: Los diferentes rasgos florales mencionados se analizarán utilizando distancias de Gower (datos cualitativos) y euclídeas (datos cuantitativos) mediante la técnica multivariada ACoP.
Resumo:
El “Mal de Río Cuarto” es la enfermedad más importante del maíz en la Argentina. El agente causal es un fijivirus denominado Mal de Río Cuarto virus (MRCV). Se transmite únicamente a través de delfácidos (Hemiptera-Delphacidae) de forma persistente propagativa. Se han descripto diversas especies con demostrada capacidad vectora, entre ellos Delphacodes kuscheli Fennah y Toya propinqua Fieber. La primera es de gran importancia tanto por su abundancia en las zonas maiceras de nuestro país como por su eficiencia de transmisión mientras que T. propinqua es una especie cosmopolita que se encuentra ampliamente distribuida en toda el área productiva. Ambas especies poseen una demostrada capacidad de transmisión a cereales de grano fino, importantes epidemiológicamente por su rol como reservorios del virus y el vector en época invernal. Un aspecto que requiere especial atención es la aparición de una nueva virosis, un Cytorhabdovirus, en infecciones mixtas con MRCV en cereales de invierno en el sur de la provincia de Córdoba (región endémica del Mal de Río Cuarto). Al igual que este último el rhabdovirus se transmite por insectos delfácidos, por lo que sería relevante estudiar las posibles interacciones entre la coinfección por ambos patógenos y sus consecuencias en la transmisión del MRCV. La capacidad vectora puede estar afectada por diversos aspectos biológicos, entre los que se pueden mencionar el estadío del insecto al momento de la adquisición del virus, los niveles de concentración viral alcanzados en el organismo del vector, la existencia de barreras morfofisiológicas (como las membranas basales del intestino medio y glándulas salivales, y mecanismos de inmunidad innata) y la presencia de endosimbiontes. Se conoce que existen diferencias en la transmisión según el MRCV se adquiera como ninfa de primer o tercer estadío, por lo que se propone realizar estudios comparativos entre ambos grupos. Se plantea además evaluar el efecto de diferencias de concentración del MRCV en el organismo del insecto en la transmisión mediante RT-qPCR, en infecciones simples y mixtas. Se analizará la posible existencia de barreras morfofisiológicas observando el tropismo de las partículas virales en los tejidos del vector a través de inmunomicroscopía confocal y la activación diferencial de genes de inmunidad innata con RT-qPCR. Dado que existen antecedentes de la presencia de endosimbiontes, como Wolbachia pipientis en este grupo de insectos, se propone además estudiar la prevalencia de esta bacteria y analizar las cepas existentes en poblaciones de delfácidos del área maicera. Este objetivo es importante por dos razones. En primer lugar, W pipientis es ampliamente estudiada como potencial biocontrolador de vectores debido al fenómeno de incompatibilidad citoplasmática que expresa en sus hospedantes. En segundo lugar, esta bacteria influye en la eficiencia de transmisión de enfermedades ya que se conoce que los endosimbiontes producen proteínas denominadas simbioninas que protegen las partículas virales de la degradación enzimática durante su circulación por la hemolinfa. De este modo, la presencia de Wolbachia podría condicionar la replicación, estabilidad y persistencia de las partículas virales en insectos vectores, fenómenos comprobados para otros patosistemas. Este proyecto tiene como objetivo final profundizar los conocimientos acerca del fenómeno de la transmisión viral y establecer bases para el manejo integrado del vector y la enfermedad.
Resumo:
Los hongos micorrícicos arbusculares (HMA) constituyen unos de los grupos de organismos del suelo más importantes en la mayoría de los ecosistemas terrestres. Estos hongos son simbiontes esenciales en las raíces de plantas ya que proveen nutrientes necesarios para el crecimiento y protección frente a patógenos. Está ampliamente documentado que tienen una importancia superlativa en la estructuración de las comunidades vegetales y los procesos ecosistémicos. Los cambios funcionales en las comunidades de HMA tendrían por lo tanto, grandes impactos en las comunidades de plantas y los ecosistemas. En el centro de Argentina, las comunidades vegetales están dominadas por especies que albergan estos simbiontes fúngicos en sus raíces. A pesar de esto, la evidencia relacionada con los efectos de los cambios ambientales sobre las comunidades micorrícicas es aun escasa. En el presente proyecto, proponemos evaluar cómo los cambios ambientales más extendidos en los bosques nativos de la Provincia de Córdoba afectan la composición funcional de los HMA. En particular, nos proponemos examinar los efectos de cambios en la vegetación, de la fragmentación del bosque y de los incendios forestales sobre la estructura de las comunidades de esporas y su composición funcional. Para esto, llevaremos a cabo tres aproximaciones y diseños experimentales. Además, analizaremos los efectos de los cambios ambientales mencionados sobre las características químicas del suelo y examinaremos las posibles relaciones entre dichas características y la estructura de las comunidades de HMA. Los resultados obtenidos del presente proyecto serán de suma relevancia en el marco de la Ley Nacional N° 26.331 que establece los presupuestos mínimos de protección ambiental para el enriquecimiento, la restauración, la conservación, el aprovechamiento y manejo sostenible de los bosques nativos.
ETIOLOGÍA E IMPORTANCIA ECONÓMICA DE UNA NUEVA ENFERMEDAD VIRAL DE BATATA EN LA PROVINCIA DE CÓRDOBA
Resumo:
La batata se ubica en el séptimo lugar como cultivo destinado a la alimentación humana, y en el quinto luego de arroz, trigo, maíz y mandioca. Globalmente, existen 8 millones de hectáreas plantadas con batata y, aproximadamente el 95% de esa superficie se ubica en más de un centenar de países en desarrollo. En Argentina, la región pampeana (Buenos Aires, Córdoba y Santa Fe) y el NEA representan el 83% de la superficie plantada. Córdoba y Buenos Aires constituyen las principales provincias productoras. A pesar de su importancia potencial en la alimentación humana y animal, como producto exportable y para industrialización, se viene registrando una marcada reducción en el área cultivada con esta hortícola y, entre las causas más relevantes que determinan este fenómeno, se encuentran las enfermedades virales. Históricamente estas patologías han sido la principal limitante en la producción de este cultivo en Argentina y, especialmente en Córdoba. Recientemente y, tras brindar solución al grave problema ocasionado por el “enanismo clorótico” (Sweet potato chlorotic dwarf disease), virosis que afectó al cv Morada INTA en la década del 90, se observó, en nuestra provincia, la aparición de una severa sintomatología viral en lotes de producción implantados con el cv Arapey INIA, genotipo de creciente difusión en el cultivo por sus buenas características agronómicas. En virtud de dicha sintomatología, se sugiere que en la nueva patología viral se halla involucrado más de un agente etiológico y que la misma produce daños económicos en la producción de Arapey INIA. Por otra parte, la identificación de el/los virus presentes en la nueva patología es el primer eslabón para la búsqueda de resistencia a los mismos. Se supone, además, que, en germoplasma selecto de batata existen fuentes de resistencia a el/los virus involucrados y, que, al menos uno de los agentes patógenos de esta virosis de Arapey INIA, es transmitido por moscas blancas. Se propone, como paso inicial para el control de la nueva etiología: caracterizar biológica, serológica y molecularmente a el/los virus involucrados en ella; preparar reactivos de diagnóstico para los mismos y evaluar la gravedad de esta virosis a través de la estimación de su incidencia, prevalencia y severidad y de los daños que provoca sobre los componentes de rendimiento, en zonas productoras de la provincia de Córdoba. Por otra parte y, debido a que una de las principales formas de control de estas enfermedades es a través del empleo de germoplasma resistente y, considerando que la mayoría de los cultivares comerciales de batata, incluído Arapey INIA poseen escasa variabilidad genética por ser monoclonales, se pretende explorar molecularmente para genes de resistencia en aproximadamente 30 genotipos (clones) promisorios procedentes de la EEA INTA San Pedro ( Bs.As.), empleados como parentales en policruzamientos, además de hacerlo en el genotipo bajo estudio (Arapey INIA).