995 resultados para MINERAL METABOLISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of chlorogenic acid., naringin, and rutin, representative members of three common families of dietary polyphenols, the hydroxycinnamates, the flavanones, and the flavonols, respectively, was studied in an in vitro mixed culture model of the human colonic microflora. Time- and concentration-dependent degradation of all three compounds was observed, which was associated with the following metabolic events after cleavage of the ester or glycosidic bond: reduction of the aliphatic double bond of the resulting hydroxycinnamate caffeic acid residue; dehydroxylation and ring fission of the heterocyclic C-ring of the resulting deglycosylated flavanone, naringenin, and of the deglycosylated flavonol, quercetin (which differed depending on the substitution). The metabolic events, their sequences, and major phenolic end products, as identified by GC-MS or LC-MS/MS, were elucidated from the structural characteristics of the investigated compounds. The major phenolic end products identified were 3-D-hydroxyphenyl)propionic acid for chlorogenic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-phenylpropionic acid for naringin, and 3-hydroxyphenylacetic acid and 3-(3-hydroxyphenyl)-propionic acid for rutin. The degree of degradation of the compounds studied was significantly influenced by the substrate concentration as well as individual variations in the composition of the fecal flora. The results support extensive metabolism of dietary polyphenols in the colon, depending on substrate concentration and residence time, with resultant formation of simple phenolics, which can be considered biomarkers of colonic metabolism if subsequently absorbed. It is also apparent that a relatively small number of phenolic degradation products are formed in the colon from the diverse group of natural polyphenols. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although apolipoprotein AN (apoA-V) polymorphisms have been consistently associated with fasting triglyceride (TG) levels, their impact on postprandial lipemia remains relatively unknown. In this study, we investigate the impact of two common apoA-V polymorphisms (-1131 T>C and S19W) and apoA-V haplotypes on fasting and postprandial lipid metabolism in adults in the United Kingdom (n = 259). Compared with the wild-type TT, apoA-V -1131 TC heterozygotes had 15% (P = 0.057) and 21% (P = 0.002) higher fasting TG and postprandial TG area under the curve (AUC), respectively. Significant (P = 0.038) and nearly significant (P = 0.057) gender X genotype interactions were observed for fasting TG and TG AUC, with a greater impact of genotype in males. Lower HDL-cholesterol was associated with the rare TC genotype (P = 0.047). Significant linkage disequilibrium was found between the apoA-V -1131 T>C and the apoC-III 3238 C>G variants, with univariate analysis indicating an impact of this apoC-III single nucleotide polymorphism (SNP) on TG AUC (P = 0.015). However, in linear regression analysis, a significant independent association with TG AUC (P = 0.007) was only evident for the apoA-V -1131 T>C SNP, indicating a greater relative importance of the apoA-V genotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of review To summarize recent findings relating to the impact of dietary fat composition on whole body lipid metabolism, and common gene variants on the blood lipid response to dietary fat change. Recent findings In recent years a more comprehensive understanding of the impact of polyunsaturated fat (PUFA) intake on the regulation of transcription factors involved in lipogenesis and fatty acid and lipoprotein metabolism has emerged. The evidence is suggestive of a greater potency of the long chain n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and in particular their oxidative products, relative to n-6 Pi In the area of nutrigenetics a number of common gene variants have been identified which may be important determinants of the blood lipid response to altered dietary fat composition. However, confirmation of associations in independent cohorts, and an understanding of the size effect of individual or combinations of genotypes, is often lacking. Summary Although in the future, genotyping holds the potential as a public health tool to target and personalize dietary advice, nutrigenetics is a relatively new science, and further research is needed to address the existing inconsistencies and knowledge gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of diurnal time is spent in a postprandial state due to successive meal intakes during the day. As long as the meals contain enough fat, a transient increase in triacylglycerolaemia and a change in lipoprotein pattern occurs. The extent and kinetics of such postprandial changes are highly variable and are modulated by numerous factors. This review focuses on factors affecting postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and risk of CHD. Postprandial lipoprotein metabolism is modulated by background dietary pattern as well as meal composition (fat amount and type, carbohydrate, protein, fibre, alcohol) and several lifestyle conditions (physical activity, tobacco use), physiological factors (age, gender, menopausal status) and pathological conditions (obesity, insulin resistance, diabetes mellitus). The roles of many genes have been explored in order to establish the possible implications of their variability in lipid metabolism and CHD risk. The postprandial lipid response has been shown to be modified by polymorphisms within the genes for apo A-I, A-IV, AN, E, B, C-I and C-III, lipoprotein lipase, hepatic lipase, fatty acid binding and transport proteins, microsomal trigyceride transfer protein and scavenger receptor class B type I. Overall, the variability in postprandial response is important and complex, and the interactions between nutrients or dietary or meal compositions and gene variants need further investigation. The extent of present knowledge and needs for future studies are discussed in light of ongoing developments in nutrigenetics.