998 resultados para Lumen formation
Resumo:
Properties for the ground state of C-9 are studied in the relativistic continuum Hartree-Bogoliubov theory with the NLSH, NLLN and TM2 effective interactions. Pairing correlations are taken into account by a density-dependent delta-force with the pairing strength for protons determined by fitting either to the experimental binding energy or to the odd-even mass difference from the five-point formula. The effects of pairing correlations on the formation of proton halo in the ground state of C-9 are examined. The halo structure is shown to be formed by the partially occupied valence proton levels p(3/2) and p(1/2).
Resumo:
An efficient method for the catalytic reduction of aromatic nitro compounds to the corresponding aromatic amines is reported. In the presence of selenium as a catalyst, the aromatic nitro compounds are quantitively reduced by CO/H2O to form the corresponding amines under atmospheric pressure. The reduction occurs in high selectivity regardless of other reducible functionalities present on the aromatic ring. There exists a phase transfer process of the catalyst selenium in the reaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Molar heat capacities (C-p,C-m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of Cp, vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 Kless than or equal toTless than or equal to383 K, C-p,C-m/J mol(-1) K-1=19.086X(4)+15.951X(3)-5.2548X(2)+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {DeltaH(T)-DeltaH(298.15)} and {S-T-S-298.15}, were derived.
Resumo:
In the study, a novel microemulsion system, consisting of water, iso-propanol and n-butanol, was developed to synthesize the nanostructured La0.95Ba0.05MnAl11O19 catalyst with high surface area and catalytic activity for methane combustion.
Resumo:
The dissociation and isomerization reaction mechanism on the ground-state potential energy surface for CH2ClI are investigated by ab initio calculations. It is found that the isomer iso-CH2I-Cl can be produced from either the recombination of the photodissociation. fragments or the isomerization reaction of CH2ClI, rather than from isomerization reaction of iso-CH2Cl-I. Further explanations of experimental results are also presented. (C) 2003 Wiley Periodicals, Inc.