997 resultados para Load density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A predominance of small, dense low-density lipoprotein (LDL) is a major component of an atherogenic lipoprotein phenotype, and a common, but modifiable, source of increased risk for coronary heart disease in the free-living population. While much of the atherogenicity of small, dense LDL is known to arise from its structural properties, the extent to which an increase in the number of small, dense LDL particles (hyper-apoprotein B) contributes to this risk of coronary heart disease is currently unknown. This study reports a method for the recruitment of free-living individuals with an atherogenic lipoprotein phenotype for a fish-oil intervention trial, and critically evaluates the relationship between LDL particle number and the predominance of small, dense LDL. In this group, volunteers were selected through local general practices on the basis of a moderately raised plasma triacylglycerol (triglyceride) level (>1.5 mmol/l) and a low concentration of high-density-lipoprotein cholesterol (<1.1 mmol/l). The screening of LDL subclasses revealed a predominance of small, dense LDL (LDL subclass pattern B) in 62% of the cohort. As expected, subjects with LDL subclass pattern B were characterized by higher plasma triacylglycerol and lower high-density lipoprotein cholesterol (<1.1 mmol/l) levels and, less predictably, by lower LDL cholesterol and apoprotein B levels (P<0.05; LDL subclass A compared with subclass B). While hyper-apoprotein B was detected in only five subjects, the relative percentage of small, dense LDL-III in subjects with subclass B showed an inverse relationship with LDL apoprotein B (r=-0.57; P<0.001), identifying a subset of individuals with plasma triacylglycerol above 2.5 mmol/l and a low concentration of LDL almost exclusively in a small and dense form. These findings indicate that a predominance of small, dense LDL and hyper-apoprotein B do not always co-exist in free-living groups. Moreover, if coronary risk increases with increasing LDL particle number, these results imply that the risk arising from a predominance of small, dense LDL may actually be reduced in certain cases when plasma triacylglycerol exceeds 2.5 mmol/l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the effect of altering meal frequency on postprandial lipaemia and associated parameters. DESIGN: A randomized open cross over study to examine the programming effects of altering meal frequency. A standard test meal was given on three occasions following: (i) the normal diet; (ii) a period of two weeks on a nibbling and (iii) a period of two weeks on a gorging diet. SETTING: Free living subjects associated with the University of Surrey. SUBJECTS: Eleven female volunteers (age 22 +/- 0.89 y) were recruited. INTERVENTIONS: The subjects were requested to consume the same foods on either a nibbling diet (12 meals per day) or a gorging diet (three meals per day) for a period of two weeks. The standard test meal containing 80 g fat, 63 g carbohydrate and 20 g protein was administered on the day prior to the dietary intervention and on the day following each period of intervention. MAJOR OUTCOME MEASURES: Fasting and postprandial blood samples were taken for the analysis of plasma triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, glucose-dependent insulinotropic polypeptide levels (GIP) and glucagon-like peptide (GLP-1), fasting total, low density lipoprotein (LDL)- and high density lipoprotein (HDL)-cholesterol concentrations and postheparin lipoprotein lipase (LPL) activity measurements. Plasma paracetamol was measured following administration of a 1.5 g paracetamol load with the meal as an index of gastric emptying. RESULTS: The compliance to the two dietary regimes was high and there were no significant differences between the nutrient intakes on the two intervention diets. There were no significant differences in fasting or postprandial plasma concentrations of triacylglycerol, non-esterified fatty acids, glucose, immunoreactive insulin, GIP and GLP-1 levels, in response to the standard test meal following the nibbling or gorging dietary regimes. There were no significant differences in fasting total or LDL-cholesterol concentrations, or in the 15 min postheparin lipoprotein lipase activity measurements. There was a significant increase in HDL-cholesterol in the subjects following the gorging diet compared to the nibbling diet. DISCUSSION: The results suggest that previous meal frequency for a period of two weeks in young healthy women does not alter the fasting or postprandial lipid or hormonal response to a standard high fat meal. CONCLUSIONS: The findings of this study did not confirm the previous studies which suggested that nibbling is beneficial in reducing the concentrations of lipid and hormones. The rigorous control of diet content and composition in the present study compared with others, suggest reported effects of meal frequency may be due to unintentional alteration in nutrient and energy intake in previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed approach.