994 resultados para Linguagem java
Resumo:
Automatic cost analysis of programs has been traditionally studied in terms of a number of concrete, predefined resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certification of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually applicationdependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a database, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-definable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these definitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering an ample set of interesting resources.
Resumo:
Finding useful sharing information between instances in object- oriented programs has recently been the focus of much research. The applications of such static analysis are multiple: by knowing which variables definitely do not share in memory we can apply conventional compiler optimizations, find coarse-grained parallelism opportunities, or, more importantly, verify certain correctness aspects of programs even in the absence of annotations. In this paper we introduce a framework for deriving precise sharing information based on abstract interpretation for a Java-like language. Our analysis achieves precision in various ways, including supporting multivariance, which allows separating different contexts. We propose a combined Set Sharing + Nullity + Classes domain which captures which instances do not share and which ones are definitively null, and which uses the classes to refine the static information when inheritance is present. The use of a set sharing abstraction allows a more precise representation of the existing sharings and is crucial in achieving precision during interprocedural analysis. Carrying the domains in a combined way facilitates the interaction among them in the presence of multivariance in the analysis. We show through examples and experimentally that both the set sharing part of the domain as well as the combined domain provide more accurate information than previous work based on pair sharing domains, at reasonable cost.
Resumo:
Finding useful sharing information between instances in object- oriented programs has been recently the focus of much research. The applications of such static analysis are multiple: by knowing which variables share in memory we can apply conventional compiler optimizations, find coarse-grained parallelism opportunities, or, more importantly,erify certain correctness aspects of programs even in the absence of annotations In this paper we introduce a framework for deriving precise sharing information based on abstract interpretation for a Java-like language. Our analysis achieves precision in various ways. The analysis is multivariant, which allows separating different contexts. We propose a combined Set Sharing + Nullity + Classes domain which captures which instances share and which ones do not or are definitively null, and which uses the classes to refine the static information when inheritance is present. Carrying the domains in a combined way facilitates the interaction among the domains in the presence of mutivariance in the analysis. We show that both the set sharing part of the domain as well as the combined domain provide more accurate information than previous work based on pair sharing domains, at reasonable cost.
Resumo:
Abstract interpretation has been widely used for the analysis of object-oriented languages and, more precisely, Java source and bytecode. However, while most of the existing work deals with the problem of finding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying fixpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based) fixpoint algorithms rely on relatively inefficient techniques to solve inter-procedural call graphs or are specific and tied to particular analyses. We argue that the design of an efficient fixpoint algorithm is pivotal to support the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. Also, the algorithm is parametric in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins". It is also incremental in the sense that, if desired, analysis data can be saved so that only a reduced amount of reanalysis is needed after a small program change, which can be instrumental for large programs. The algorithm is also multivariant and flowsensitive. Finally, another interesting characteristic of the algorithm is that it is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are provided and discussed with an example.