993 resultados para Line loss
Resumo:
In this thesis, the DFMA is presented and used for the purpose of having a design for a vertical transfer line that can be easily manufactured and assembled. The design of the transfer line, the major components and drawings are presented. The ease of assembly, the costs of manufacturing and differences between the use of steel structure and aluminum are compared. The ALARA principle is followed to minimize the risk of radiation exposure by the means of locating the test ion sources outside the radioactive area.
Resumo:
Obesity is one of the most frequent nutritional problems in companion animals and can lead to severe health problems in dogs and cats, such as cardiovascular diseases. This research aimed to evaluate the structural and functional cardiac changes after weight loss in obese dogs. Eighteen obese healthy dogs were assigned into three different groups, according with their initial body weight: Group I (dogs up to 15 kg), Group II (dogs weighing between 15.1 and 30 kg), and Group III (dogs weighing over 30 kg). The animals were submitted to a caloric restriction weight-loss program until they lose 15% of the body weight. The M-mode echocardiogram, electrocardiogram, and blood pressure evaluations were performed before the diet has started and after the dogs have reached the target weight. Data showed a decrease in left ventricular free wall thickness during diastole and systole in Group III, decrease in the systolic blood pressure in Group III, and also in the mean blood pressure in Group II. It was possible to conclude that the weight loss program can reverse structural cardiac changes such as left ventricle eccentric hypertrophy in dogs weighing more than 30 kg, and decrease the arterial blood pressure in obese dogs.
Resumo:
Changes in the electroencephalography (EEG) signal have been used to study the effects of anesthetic agents on the brain function. Several commercial EEG based anesthesia depth monitors have been developed to measure the level of the hypnotic component of anesthesia. Specific anesthetic related changes can be seen in the EEG, but still it remains difficult to determine whether the subject is consciousness or not during anesthesia. EEG reactivity to external stimuli may be seen in unconsciousness subjects, in anesthesia or even in coma. Changes in regional cerebral blood flow, which can be measured with positron emission tomography (PET), can be used as a surrogate for changes in neuronal activity. The aim of this study was to investigate the effects of dexmedetomidine, propofol, sevoflurane and xenon on the EEG and the behavior of two commercial anesthesia depth monitors, Bispectral Index (BIS) and Entropy. Slowly escalating drug concentrations were used with dexmedetomidine, propofol and sevoflurane. EEG reactivity at clinically determined similar level of consciousness was studied and the performance of BIS and Entropy in differentiating consciousness form unconsciousness was evaluated. Changes in brain activity during emergence from dexmedetomidine and propofol induced unconsciousness were studied using PET imaging. Additionally, the effects of normobaric hyperoxia, induced during denitrogenation prior to xenon anesthesia induction, on the EEG were studied. Dexmedetomidine and propofol caused increases in the low frequency, high amplitude (delta 0.5-4 Hz and theta 4.1-8 Hz) EEG activity during stepwise increased drug concentrations from the awake state to unconsciousness. With sevoflurane, an increase in delta activity was also seen, and an increase in alpha- slow beta (8.1-15 Hz) band power was seen in both propofol and sevoflurane. EEG reactivity to a verbal command in the unconsciousness state was best retained with propofol, and almost disappeared with sevoflurane. The ability of BIS and Entropy to differentiate consciousness from unconsciousness was poor. At the emergence from dexmedetomidine and propofol induced unconsciousness, activation was detected in deep brain structures, but not within the cortex. In xenon anesthesia, EEG band powers increased in delta, theta and alpha (8-12Hz) frequencies. In steady state xenon anesthesia, BIS and Entropy indices were low and these monitors seemed to work well in xenon anesthesia. Normobaric hyperoxia alone did not cause changes in the EEG. All of these results are based on studies in healthy volunteers and their application to clinical practice should be considered carefully.