994 resultados para Leukotrienes -- immunology
Resumo:
The immunogenicity of a novel synthetic peptide consisting of an average of 40 (Asn-Ala-Asn-Pro) repeats of the circumsporozoite protein of Plasmodium falciparum, (NANP)40, was studied in mice without using any carrier proteins. First, high titers of anti-(NANP)40 antibodies could be obtained after immunization of C57BL/6 mice. These antibodies also reacted with an extract of mosquitoes infected with P. falciparum sporozoites. C57BL/6 nu/nu mice did not produce antibodies against (NANP)40. Secondly, when 14 strains of mice with nine different H-2 haplotypes were immunized with (NANP)40 without carrier, only H-2b mice were found to produce anti-(NANP)40 antibodies, whereas all non-H-2b mice were consistently unresponsive. This response was demonstrated to be I-A-linked by using recombinant and mutant mice. I-Ab [B10.A(5R)] mice produced anti-(NANP)40 antibodies as well as H-2b inbred mice. B6CH-2bm12 I-Ab-mutant mice showed only a very low response. Third, the antibody response against (NANP)40 could be induced in nonresponder mice by immunization with the peptide coupled to a carrier protein. In view of the existence of such an exceptional H-2b restriction in the response to sporozoite synthetic peptides in mice, the triggering of peptide-specific T cell responses in humans receiving sporozoite malaria vaccines might be difficult to achieve.
Resumo:
The class B scavenger receptor CD36 is a component of the pattern recognition receptors on monocytes that recognizes a variety of molecules. CD36 expression in monocytes depends on exposure to soluble mediators. We demonstrate here that CD36 expression is induced in human monocytes following exposure to IL-13, a Th2 cytokine, via the peroxisome proliferator-activated receptor (PPAR)gamma pathway. Induction of CD36 protein was paralleled by an increase in CD36 mRNA. The PPARgamma pathway was demonstrated using transfection of a PPARgamma expression plasmid into the murine macrophage cell line RAW264.7, expressing very low levels of PPARgamma, and in peritoneal macrophages from PPARgamma-conditional null mice. We also show that CD36 induction by IL-13 via PPARgamma is dependent on phospholipase A2 activation and that IL-13 induces the production of endogenous 15-deoxy-Delta12,14-prostaglandin J2, an endogenous PPARgamma ligand, and its nuclear localization in human monocytes. Finally, we demonstrate that CD36 and PPARgamma are involved in IL-13-mediated phagocytosis of Plasmodium falciparum-parasitized erythrocytes. These results reveal a novel role for PPARgamma in the alternative activation of monocytes by IL-13, suggesting that endogenous PPARgamma ligands, produced by phospholipase A2 activation, could contribute to the biochemical and cellular functions of CD36.
Resumo:
Each cell is equipped with two copies (alleles) of each autosomal gene. While the vast majority use both alleles, occasional genes are expressed from a single allele. The reason for mono-allelic expression is not always evident and can serve distinct purposes. First, it may facilitate the tight control over the dosage of certain gene products such as some growth factors and their receptors or X-linked genes. Second, the differential usage of the two parental alleles may reflect the mechanisms that ensure mono-specificity, e.g. olfactory receptors, T and B cell receptors. The context of allele-specific expression of the murine Ly49 natural killer (NK) cell receptor genes suggests that their allele-specific expression reflects a process that generates clonal variability.
Resumo:
NKT cells utilize a restricted alphabeta TCR repertoire that recognizes glycolipids in association with CD1d. The recent development of fluorescent CD1d tetramers loaded with the synthetic glycolipid alpha-galactosyl-ceramide has led to a clearer definition of NKT-cell subsets as well as important insights into their developmental origin. As many as four subsets may exist, differing in NK1.1 expression, TCR repertoire and dependence on CD1d and various glycolipids for development. Two different lineage-commitment models have been proposed, with most evidence favoring a byproduct of conventional-T-cell development.