1000 resultados para LIGH SOURCE
Resumo:
A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
It is considered that consumption of very long chain (VLC, carbon chain length >= 20) n - 3 PUFAs in most Western populations is sub-optimal and benefits in relation to chronic disease would be gained from increased consumption. This review examines the current contribution that meat makes to dietary intake of VLC n - 3 PUFA and given its current low contribution, how ruminant meat may be enriched. Enrichment both directly with VLC n - 3 fatty acids and indirectly by increasing intake by the animals of alpha-linolenic acid (ALNA; C 18:3 n - 3) are considered. Since it now appears that dietary ALNA is a very limited source of VLC n - 3 PUFA in humans, the indirect route is controversial but since some forages-are rich sources of ALNA this route has many sustainability and environmental attractions. Consideration is also given to the increased concentrations of trans and conjugated fatty acids that will arise from enriching ruminant meat with PUFA.
Resumo:
It is considered that consumption of very long chain (VLC, carbon chain length >= 20) n - 3 PUFAs in most Western populations is sub-optimal and benefits in relation to chronic disease would be gained from increased consumption. This review examines the current contribution that meat makes to dietary intake of VLC n - 3 PUFA and given its current low contribution, how ruminant meat may be enriched. Enrichment both directly with VLC n - 3 fatty acids and indirectly by increasing intake by the animals of alpha-linolenic acid (ALNA; C 18:3 n - 3) are considered. Since it now appears that dietary ALNA is a very limited source of VLC n - 3 PUFA in humans, the indirect route is controversial but since some forages-are rich sources of ALNA this route has many sustainability and environmental attractions. Consideration is also given to the increased concentrations of trans and conjugated fatty acids that will arise from enriching ruminant meat with PUFA.
Resumo:
in vitro studies were conducted on five sorghum genotypes developed for the dry tropical highland climate of Kenya and which can be fed to ruminants fresh or as silage. The five sorghum genotypes consisted of two normal white mid-rib (WMR) genotypes, coded E1291 and E65181, and three brown-midrib (BMR) genotypes, coded Lan-5, Lan-6 and Lan-12. Whole mature plants (herbage plus grain) and silage made from E 1291 were used in the study. An in vitro manual gas production technique was used to compare the nutritive characteristics of these genotypes for ruminants. These sorghums differed significantly in true organic matter degraded (OMDeg), which ranged from 520 to 678 g/kg after 24 h incubation and 706 to 805 g/kg after 72 h incubation. All the BMR sorghums had a higher degradability than the WMR genotype, E6518, and the silage, with Lan-5 having the highest degradability. Methane produced per g OMDeg ranged from 40.6 to 46.4 mL/g after 24 h incubation and from 53.1 to 62.6 mL/g after 72 h incubation. It was similar for all genotypes after 24 h incubation but Lan-12 had the highest methane production after 72 h incubation. After 24 h and 72 h incubation all the genotypes produced a similar total amount of gas per OMDeg (293 to 309 and 357 to 385 mL/g, respectively) with similar total short chain fatty acid concentrations in the liquid digesta (7.8 to 10.4 and 9.5 to 10.3 mmol, respectively) and acetate to propionate ratios of 2.16 to 2.49 and 2.35 to 2.87, respectively. The sorghums showed great potential as ruminant feed sources in the region.
Resumo:
The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.
Resumo:
The photodimerisation of single crystals of substituted cinnamic acid has been monitored continuously by infrared microscopy using a synchrotron source. The beta-form of 2,4-dichloro-trans-cinnamic acid dimerises under ultraviolet irradiation to form the corresponding beta-truxinic acid derivative in a reaction which follows strictly first order kinetics. By contrast the corresponding reactions in single crystals of beta-2-chloro-trans-cinnamic acid and beta-4-chloro-trans-cinnamic acid deviate somewhat from first order kinetics as a result of solid-state effects. In all three cases the reactions proceed smoothly from monomer to dimer with no hint of any reaction intermediate.
Resumo:
Reaction of cis-Ru(bisox)(2)Cl-2, where bisox is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, with HNO3 in 1 : 4 molar proportion in boiling water under N-2 atmosphere and subsequent addition of an excess of NaClO4 center dot H2O yields [Ru(bisox)(HL)(NO)](ClO4)(NO3) (1). HL is a hydrolysed form of bisox where one of the oxazoline rings opens up. X-Ray crystallography shows that 1 contains an octahedral RuN5O core. HL binds the metal through an imino N, an amide N and an alcoholic O atom. Reaction of cis-Ru(bisox)(2)Cl-2 with an excess of NaNO2 in water gives cis-Ru(bisox)(2)(NO2)(2) (2). On acidification by HClO4 in methanol, 2 is smoothly converted to cis-[Ru(bisox)(2)(NO2)(NO)](ClO4)(2) (3) due to equilibrium (1).
Resumo:
Chromone-3-carbaldehyde reacts with N-methylglycine or glycine in the presence of excess formaldehyde to produce N-(chromone-3-ylmethyl)-N-methylglycine or N,N-di(chromone-3-ylmethyl)glycine, respectively, by a deformylative Mannich type reaction. Use of alanine or leucine or methionine in place of glycine produces N-(chromone-3-ylmethyl)alanine/-leucine/-methionine, respectively. (C) 2009 Elsevier Ltd. All rights reserved.