999 resultados para LGBT studies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton ecology and productivity is one of the main branches of contemporary oceanographic research. Research groups in this branch have increasingly started to utilise bio-optical applications. My main research objective was to critically investigate the advantages and deficiencies of the fast repetition rate (FRR) fluorometry for studies of productivity of phytoplankton, and the responses of phytoplankton towards varying environmental stress. Second, I aimed to clarify the applicability of the FRR system to the optical environment of the Baltic Sea. The FRR system offers a highly dynamic tool for studies of phytoplankton photophysiology and productivity both in the field and in a controlled environment. The FRR metrics obtain high-frequency in situ determinations of the light-acclimative and photosynthetic parameters of intact phytoplankton communities. The measurement protocol is relatively easy to use without phases requiring analytical determinations. The most notable application of the FRR system lies in its potential for making primary productivity (PP) estimations. However, the realisation of this scheme is not straightforward. The FRR-PP, based on the photosynthetic electron flow (PEF) rate, are linearly related to the photosynthetic gas exchange (fixation of 14C) PP only in environments where the photosynthesis is light-limited. If the light limitation is not present, as is usually the case in the near-surface layers of the water column, the two PP approaches will deviate. The prompt response of the PEF rate to the short-term variability in the natural light field makes the field comparisons between the PEF-PP and the 14C-PP difficult to interpret, because this variability is averaged out in the 14C-incubations. Furthermore, the FRR based PP models are tuned to closely follow the vertical pattern of the underwater irradiance. Due to the photoacclimational plasticity of phytoplankton, this easily leads to overestimates of water column PP, if precautionary measures are not taken. Natural phytoplankton is subject to broad-waveband light. Active non-spectral bio-optical instruments, like the FRR fluorometer, emit light in a relatively narrow waveband, which by its nature does not represent the in situ light field. Thus, the spectrally-dependent parameters provided by the FRR system need to be spectrally scaled to the natural light field of the Baltic Sea. In general, the requirement of spectral scaling in the water bodies under terrestrial impact concerns all light-adaptive parameters provided by any active non-spectral bio-optical technique. The FRR system can be adopted to studies of all phytoplankton that possess efficient light harvesting in the waveband matching the bluish FRR excitation. Although these taxa cover the large bulk of all the phytoplankton taxa, one exception with a pronounced ecological significance is found in the Baltic Sea. The FRR system cannot be used to monitor the photophysiology of the cyanobacterial taxa harvesting light in the yellow-red waveband. These taxa include the ecologically-significant bloom-forming cyanobacterial taxa in the Baltic Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline TiO2 films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried Out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO2 film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary genetics incorporates traditional population genetics and studies of the origins of genetic variation by mutation and recombination, and the molecular evolution of genomes. Among the primary forces that have potential to affect the genetic variation within and among populations, including those that may lead to adaptation and speciation, are genetic drift, gene flow, mutations and natural selection. The main challenges in knowing the genetic basis of evolutionary changes is to distinguish the adaptive selection forces that cause existent DNA sequence variants and also to identify the nucleotide differences responsible for the observed phenotypic variation. To understand the effects of various forces, interpretation of gene sequence variation has been the principal basis of many evolutionary genetic studies. The main aim of this thesis was to assess different forms of teleost gene sequence polymorphisms in evolutionary genetic studies of Atlantic salmon (Salmo salar) and other species. Firstly, the level of Darwinian adaptive evolution affected coding regions of the growth hormone (GH) gene during the teleost evolution was investigated based on the sequence data existing in public databases. Secondly, a target gene approach was used to identify within population variation in the growth hormone 1 (GH1) gene in salmon. Then, a new strategy for single nucleotide polymorphisms (SNPs) discovery in salmonid fishes was introduced, and, finally, the usefulness of a limited number of SNP markers as molecular tools in several applications of population genetics in Atlantic salmon was assessed. This thesis showed that the gene sequences in databases can be utilized to perform comparative studies of molecular evolution, and some putative evidence of the existence of Darwinian selection during the teleost GH evolution was presented. In addition, existent sequence data was exploited to investigate GH1 gene variation within Atlantic salmon populations throughout its range. Purifying selection is suggested to be the predominant evolutionary force controlling the genetic variation of this gene in salmon, and some support for gene flow between continents was also observed. The novel approach to SNP discovery in species with duplicated genome fragments introduced here proved to be an effective method, and this may have several applications in evolutionary genetics with different species - e.g. when developing gene-targeted markers to investigate quantitative genetic variation. The thesis also demonstrated that only a few SNPs performed highly similar signals in some of the population genetic analyses when compared with the microsatellite markers. This may have useful applications when estimating genetic diversity in genes having a potential role in ecological and conservation issues, or when using hard biological samples in genetic studies as SNPs can be applied with relatively highly degraded DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been dissected to generate polypeptide fragments. These fragments when cloned, expressed and purified reassemble in the presence of cofactors to yield a catalytically competent enzyme. Structural characterization of AHAS has been impeded due to the fact that the holoenzyme is prone to dissociation leading to heterogeneity in samples. Our approach has enabled the structural characterization using high-resolution nuclear magnetic resonance methods. Near complete sequence specific NMR assignments for backbone H-N, N-15, C-13 alpha and C-13(beta) atoms of the FAD binding domain of ilvB have been obtained on samples isotopically enriched in H-2, C-13 and N-15. The secondary structure determined on the basis of observed C-13(alpha) secondary chemical shifts and sequential NOEs indicates that the secondary structure of the FAD binding domain of E. coli AHAS large Subunit (ilvB) is similar to the structure of this domain in the catalytic subunit of yeast AHAS. Protein-protein interactions involving the regulatory subunit (ilvN) and the domains of the catalytic subunit (ilvB) were studied using circular dichroic and isotope edited solution nuclear magnetic resonance spectroscopic methods. Observed changes in circular dichroic spectra indicate that the regulatory subunit (ilvN) interacts with ilvB alpha and ilvB beta domains of the catalytic subunit and not with the ilvB gamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvB beta and proximal to the intrasubunit ilvB alpha/ilvB beta domain interface. The implication of this interaction on the role of the regulatory subunit oil the activity of the holoenzyme is discussed. NMR studies of the regulatory domains show that these domains are structured in solution. Preliminary evidence for the interaction of ilvN with the metabolic end product of the pathway, viz., valine is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization and properties of trans-(X)-[RuX2(CO)(2)(alpha/beta-NaiPy)] (1, 2) (alpha-NaiPy (a), beta-NaiPy (b); X = Cl (1), I (2)) are described in this work. The structures are confirmed by single crystal X-ray diffraction studies. Reaction of these compounds with Me3NO in MeCN has isolated monocarbonyl trans-(X)-RuX2(CO)(MeCN)(alpha/beta-NaiPy)] (3, 4). The complexes show intense emission properties. Quantum yields of 1 and 2 (phi= 0.02-0.08) are higher than 3 and 4 (phi = 0.006-0.015). Voltammogram shows higher Ru(III)/Ru(II) (1.3-1.5 V) potential of 1 and 2 than that of 3 and 4 (0.8-0.9 V) that may be due to coordination of two pi-acidic CO groups in former. The electronic spectra and redox properties of the complexes are compared with the results obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using polarizable continuum model (CPCM).