992 resultados para LEAF GROWTH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoprene emission from plants accounts for about one third of annual global volatile organic compound emissions. The largest source of isoprene for the global atmosphere is the Amazon Basin. This study aimed to identify and quantify the isoprene emission and photosynthesis at different levels of light intensity and leaf temperature, in three phenological phases (young mature leaf, old mature leaf and senescent leaf) of Eschweilera coriacea (Matamatá verdadeira), the species with the widest distribution in the central Amazon. In situ photosynthesis and isoprene emission measurements showed that young mature leaf had the highest rates at all light intensities and leaf temperatures. Additionally, it was observed that isoprene emission capacity (Es) changed considerably over different leaf ages. This suggests that aging leads to a reduction of both leaf photosynthetic activity and isoprene production and emission. The algorithm of Guenther et al. (1999) provided good fits to the data when incident light was varied, however differences among E S of all leaf ages influenced on quantic yield predicted by model. When leaf temperature was varied, algorithm prediction was not satisfactory for temperature higher than ~40 °C; this could be because our data did not show isoprene temperature optimum up to 45 °C. Our results are consistent with the hypothesis of the isoprene functional role in protecting plants from high temperatures and highlight the need to include leaf phenology effects in isoprene emission models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theobroma species have economic importance due to their use in the cosmetic and food industries, mainly in the production of chocolate. However, the anatomy of their vegetative structures remains poorly studied. The goal of this study was to describe the anatomical features of Theobroma grandiflorum, T. speciosum and T. subincanum to contribute to the biological knowledge of these species, as well as provide support to the biotechnological studies of native fruit plants of the Amazon. Leaves at different developmental stages were collected and analyzed under light microscopy and scanning electron microscopy. Sessile and stalked stellate trichomes and digitiform glandular trichomes were observed in the expanded leaves of T. grandiflorum and T. subincanum. These species were also similar in the morphology of the midrib, the organization of the mesophyll and the presence of starch grains in the midrib pith cells. Claviform glandular trichomes and mucilage cells in the epidermis occurred only in the expanded leaves of T. speciosum. The presence of mucilage secretory trichomes in shoot apices (colleters) of all species is a new finding for the genus Theobroma.