1000 resultados para Iodide transport


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water uptake and water loss behaviour in three different formulations of zinc oxy-chloride cement have been studied in detail. Specimens of each material were subjected to a high humidity atmosphere (93% RH) over saturated aqueous sodium sulfate, and a low humidity desiccating atmosphere over concentrated sulfuric acid. In high humidity, the cement formulated from the nominal 75% ZnCl2 solutions gained mass, eventually becoming too sticky to weigh further. The specimens at 25% and 50% ZnCl2 by contrast lost mass by a diffusion process, though by 1 week the 50% cement had stated to gain mass and was also too sticky to weigh. In low humidity, all three cements lost mass, again by a diffusion process. Both water gain and water loss followed Fick's law for a considerable time. In the case of water loss under desiccating conditions, this corresponded to values of Mt/MĄ well above 0.5. However, plots did not go through the origin, showing that there was an induction period before true diffusion began. Diffusion coefficients varied from 1.56 x 10-5 (75% ZnCl2) to 2.75 x 10-5 cm2/s (50% ZnCl2), and appeared to be influenced not simply by composition. The drying of the 25% and 50% ZnCl2 cements in high humidity conditions occurred at a much lower rate, with a value of D of 2.5 x 10-8 cm2/s for the 25% ZnCl2 cement. This cement was found to equilibrate slowly, but total water loss did not differ significantly from that of the cements stored under desiccating conditions. Equilibration times for water loss in desiccating conditions were of the order of 2-4 hours, depending on ZnCl2 content; equilibrium water losses were respectively 28.8 [25% ZnCl2], 16.2 [50%] and 12.4 [75%] which followed the order of ZnCl2 content. It is concluded that the water transport processes are strongly influenced by the ZnCl2 content of the cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this paper is to provide the core description of the modelling exercise within the Shelf Edge Advection Mortality And Recruitment (SEAMAR) programme. An individual-based model (IBM) was developed for the prediction of year-to-year survival of the early life-history stages of mackerel (Scomber scombrus) in the eastern North Atlantic. The IBM is one of two components of the model system. The first component is a circulation model to provide physical input data for the IBM. The circulation model is a geographical variant of the HAMburg Shelf Ocean Model (HAMSOM). The second component is the IBM, which is an i-space configuration model in which large numbers of individuals are followed as discrete entities to simulate the transport, growth and mortality of mackerel eggs, larvae and post-larvae. Larval and post-larval growth is modelled as a function of length, temperature and food distribution; mortality is modelled as a function of length and absolute growth rate. Each particle is considered as a super-individual representing 10 super(6) eggs at the outset of the simulation, and then declining according to the mortality function. Simulations were carried out for the years 1998-2000. Results showed concentrations of particles at Porcupine Bank and the adjacent Irish shelf, along the Celtic Sea shelf-edge, and in the southern Bay of Biscay. High survival was observed only at Porcupine and the adjacent shelf areas, and, more patchily, around the coastal margin of Biscay. The low survival along the shelf-edge of the Celtic Sea was due to the consistently low estimates of food availability in that area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the ecosystem of the North Sea may occur as pronounced inter-annual and step-wise shifts as well as gradual trends. Marked inter-annual shifts have occurred at least twice in the last two decades, the late 1980s and the late 1990s, that appear to reflect an increased inflow of oceanic water and species. Numerical modelling has demonstrated a link between altered rates of inflow of oceanic water into the northern North Sea and a regime shift after 1988. In 1989 and 1997 oceanic species not normally found in the North Sea were observed there, suggesting pulses of oceanic water had entered the basin and triggered the subsequent ecosystem change. The oceanic water has origins mainly west of Britain in the Rockall Trough, where the long-term mean volume transport is around 3.7Sv northwards (1Sv=10 super(6)m super(3)s super(1)), but in early 1989 and early 1998 was observed to be more than twice the mean value, reaching over 7Sv. These periods of high transport coinciding with the inferred pulses of oceanic water into the North Sea suggest a connection through the continental shelf edge current. Copyright 2001 International Council for the Exploration of the Sea