994 resultados para Intensity parameters
Resumo:
The time to reach the maximum response of arterial pressure, heart rate and vascular resistance (hindquarter and mesenteric) was measured in conscious male spontaneously hypertensive (SHR) and normotensive control rats (NCR; Wistar; 18-22 weeks) subjected to electrical stimulation of the aortic depressor nerve (ADN) under thiopental anesthesia. The parameters of stimulation were 1 mA intensity and 2 ms pulse length applied for 5 s, using frequencies of 10, 30, and 90 Hz. The time to reach the hemodynamic responses at different frequencies of ADN stimulation was similar for SHR (N = 15) and NCR (N = 14); hypotension = NCR (4194 ± 336 to 3695 ± 463 ms) vs SHR (3475 ± 354 to 4494 ± 300 ms); bradycardia = NCR (1618 ± 152 to 1358 ± 185 ms) vs SHR (1911 ± 323 to 1852 ± 431 ms), and the fall in hindquarter vascular resistance = NCR (6054 ± 486 to 6550 ± 847 ms) vs SHR (4849 ± 918 to 4926 ± 646 ms); mesenteric = NCR (5574 ± 790 to 5752 ± 539 ms) vs SHR (5638 ± 648 to 6777 ± 624 ms). In addition, ADN stimulation produced baroreflex responses characterized by a faster cardiac effect followed by a vascular effect, which together contributed to the decrease in arterial pressure. Therefore, the results indicate that there is no alteration in the conduction of the electrical impulse after the site of baroreceptor mechanical transduction in the baroreflex pathway (central and/or efferent) in conscious SHR compared to NCR.
Resumo:
We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.
Resumo:
The auditory brainstem response (ABR) is a test widely used to assess the integrity of the brain stem. Although it is considered to be an auditory-evoked potential that is influenced by the physical characteristics of the stimulus, such as rate, polarity and type of stimulus, it may also be influenced by the change in several parameters. The use of anesthetics may adversely influence the value of the ABR wave latency. One of the anesthetics used for e ABR assessment, especially in animal research, is the ketamine/xylazine combination. Our objective was to determine the influence of the ketamine/xylazine anesthetic on the ABR latency values in adult gerbils. The ABRs of 12 adult gerbils injected with the anesthetic were collected on three consecutive days, or a total of six collections, namely: pre-collection and A, B, C, D, and E collections. Before each collection the gerbil was injected with a dose of ketamine (100 mg/kg)/xylazine (4 mg/kg). For the capture of the ABR, 2000 click stimuli were used with rarefaction polarity and 13 stimuli per second, 80 dBnHL intensity and in-ear phones. A statistically significant difference was observed in the latency of the V wave in the ABR of gerbils in the C and D collections compared to the pre-, A and E collections, and no difference was observed between the pre-, A, B, and E collections. We conclude that the use of ketamine/xylazine increases the latency of the V wave of the ABR after several doses injected into adult gerbils; thus clinicians should consider the use of this substance in the assessment of ABR.
Resumo:
Human serum paraoxonase contributes to the anti-atherogenic effect of high-density lipoprotein cholesterol (HDL-C) and has been shown to protect both low-density lipoprotein cholesterol (LDL-C) and HDL-C against lipid peroxidation. We investigated the effects of rosiglitazone on paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus [50 patients (30 males, 20 females); mean±SD age: 58.7±9.2 years, body mass index: 28.2±4.1'kg/m2], in whom glucose control could not be achieved despite treatment with metformin, sulphonylurea, and/or insulin. The patients were given 4'mg/day rosiglitazone for 3 months in addition to their usual treatment. Serum paraoxonase activity, malondialdehyde, homocysteine, and lipid profile were measured at the time of initiation and at the end of therapy with rosiglitazone. After rosiglitazone therapy, serum levels of HDL-C, apolipoprotein A-1, and paraoxonase activity increased significantly (P<0.05) and malondialdehyde, homocysteine, lipoprotein(a), and glucose levels decreased significantly (P<0.05), but no significant changes in levels of total cholesterol and apolipoprotein B were observed. Triglyceride levels also increased significantly (P<0.05). Rosiglitazone treatment led to an improvement in glycemic control and to an increase in paraoxonase activity and HDL-C levels. Although rosiglitazone showed favorable effects on oxidant/antioxidant balance and lipid profile, further studies are needed to determine the effect of rosiglitazone on cardiovascular risk factors and cardiovascular morbidity and mortality.