994 resultados para Induced elevation
Resumo:
Glucose-induced thermogenesis was studied in 12 overweight patients (9F and 3M) before (mean body weight +/- s.e.m. 83 +/- 2 kg) and after weight loss (68 +/- 2 kg), and in eight of the same patients following relapse of body weight gain (84 +/- 5 kg). Expressed as a percentage of the energy content of the 100 g oral glucose load, glucose-induced thermogenesis was lower in the overweight before weight loss (6.5 +/- 0.5 per cent, P less than 0.05), after weight loss (3.9 +/- 0.6 per cent, P less than 0.01) and after weight regain (6.3 +/- 0.9 per cent, P less than 0.05) than in a group of lean control subjects, matched for sex and age (8.3 +/- 0.5 per cent). Basal energy expenditure was lower after weight reduction than before (1.16 +/- 0.04 vs 1.41 +/- 0.08 kcal/min, P less than 0.01). In the formerly overweight patients, the combined effect of a decreased basal energy expenditure and an attenuation of glucose induced thermogenesis resulted in a postprandial energy expenditure which was markedly lower than in the overweight state (P less than 0.001). Following relapse of obesity, glucose-induced thermogenesis remained attenuated compared to control subjects. These results suggest that a lowered basal energy expenditure and a reduced glucose-induced thermogenesis contribute to the positive energy balance which results in relapse of body weight gain after cessation of a hypocaloric diet.
Resumo:
The specific sensitization of tumor cells to the apoptotic response induced by genotoxins is a promising way of increasing the efficacy of chemotherapies. The RasGAP-derived fragment N2, while not regulating apoptosis in normal cells, potently sensitizes tumor cells to cisplatin- and other genotoxin-induced cell death. Here we show that fragment N2 in living cells is mainly located in the cytoplasm and only minimally associated with specific organelles. The cytoplasmic localization of fragment N2 was required for its cisplatin-sensitization property because targeting it to the mitochondria or the ER abrogated its ability to increase the death of tumor cells in response to cisplatin. These results indicate that fragment N2 requires a spatially constrained cellular location to exert its anti-cancer activity.
Resumo:
The majority of Kudoa species infect the somatic muscle of fish establishing cysts. As there is no effective method to detect infected fish without destroying them these parasited fish reach the consumer. This work was developed to determine whether this parasite contains antigenic compounds capable of provoking an immune response in laboratory animals, in order to consider the possible immunopathological effects in man by the ingestion of Kudoa infected fish. BALB/c mice were injected by the subcutaneous route with the following extracts suspended in aluminium hydroxide: group 1 (black Kudoa sp. pseudocyst extract), group 2 (white Kudoa sp. pseudocyst extract), and group 3 (non-infected hake meat extract). Specific antibody levels were measured by ELISA against homologous and heterologous antigens. The highest responses were obtained from the black Kudoa sp. pseudocyst extract (group 1).The low optic density levels detected in group 3 proved that the results obtained in groups 1 and 2 were a consequence of the parasitic extract injection. The IgG1 was the predominant subclass. IgE detected in groups 1 and 2 showed the possible allergenic nature of some of the components of the parasitic extract. High IgA levels and medium IgG2a and IgG3 levels were obtained in groups 1 and 2. Low IgG2b responses were shown. No cross-reactions between Kudoa sp. pseudocyst extracts and the non-infected hake meat extract were observed.
Resumo:
PURPOSE OF REVIEW: This review discusses publications highlighting current research on toxic, chemotherapy-induced peripheral neuropathies (CIPNs), and drug-induced peripheral neuropathies (DIPNs). RECENT FINDINGS: The emphasis in clinical studies is on the early detection and grading of peripheral neuropathies, whereas recent studies in animal models have given insights into molecular mechanisms, with the discovery of novel neuronal, axonal, and Schwann cell targets. Some substances trigger inflammatory changes in the peripheral nerves. Pharmacogenetic techniques are underway to identify genes that may help to predict individuals at higher risk of developing DIPNs. Several papers have been published on chemoprotectants; however, to date, this approach has not been shown effective in clinical trials. SUMMARY: Both length and nonlength-dependent neuropathies are encountered, including small-fiber involvement. The introduction of new diagnostic techniques, such as excitability studies, skin laser Doppler flowmetry, and pharmacogenetics, holds promise for early detection and to elucidate underlying mechanisms. New approaches to improve functions and quality of life in CIPN patients are discussed. Apart from developing less neurotoxic anticancer therapies, there is still hope to identify chemoprotective agents (erythropoietin and substances involved in the endocannabinoid system are promising) able to prevent or correct painful CIPNs.