1000 resultados para Implementació real
Resumo:
D. João de Magalhães e Avelar (1754-1833) formou aquela que, ao tempo, era a maior biblioteca privada portuguesa. Com cerca de 36000 volumes, foi elogiada por personalidades nacionais e estrangeiras, por aliar à quantidade de volumes inúmeros e valiosíssimos manuscritos. Formada ao longo dos séculos XVIII e XIX, durante mais de 30 anos, originou, em 1833, o primeiro núcleo da actual Biblioteca Pública Municipal do Porto. Numa época em que possuir livros era sinónimo de prestígio social mas num período em que quase não havia tradição de bibliotecas públicas no nosso país, contrariamente ao que acontecia noutras realidades, a livraria privada de Avelar formou, com outras, a Real Biblioteca Pública da Cidade do Porto. Em 1833, aquando do primeiro aniversário da entrada do exército liberal no Porto, por decreto, criou-se a biblioteca portuense. Estabelecida na casa que servia de Hospício dos Religiosos de Santo António do Val da Piedade, à praça da Cordoaria, tinha como objectivo satisfazer a utilidade pública, estando aberta todos os dias, excepto domingos e feriados. Propriedade da cidade do Porto, ficava sujeita à administração da Câmara que se obrigava à sua guarda, manutenção, conservação, bem como à constante aquisição de espólio. Como veremos, tratou-se de um processo conflituoso mas o Porto obtinha, definitivamente, a sua biblioteca pública.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
Dissertação elaborada para a obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
A preliminary version of this paper appeared in Proceedings of the 31st IEEE Real-Time Systems Symposium, 2010, pp. 239–248.
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.
Resumo:
In this paper, we present some of the fault tolerance management mechanisms being implemented in the Multi-μ architecture, namely its support for replica non-determinism. In this architecture, fault tolerance is achieved by node active replication, with software based replica management and fault tolerance transparent algorithms. A software layer implemented between the application and the real-time kernel, the Fault Tolerance Manager (FTManager), is the responsible for the transparent incorporation of the fault tolerance mechanisms The active replication model can be implemented either imposing replica determinism or keeping replica consistency at critical points, by means of interactive agreement mechanisms. One of the Multi-μ architecture goals is to identify such critical points, relieving the underlying system from performing the interactive agreement in every Ada dispatching point.
Resumo:
This paper presents an architecture (Multi-μ) being implemented to study and develop software based fault tolerant mechanisms for Real-Time Systems, using the Ada language (Ada 95) and Commercial Off-The-Shelf (COTS) components. Several issues regarding fault tolerance are presented and mechanisms to achieve fault tolerance by software active replication in Ada 95 are discussed. The Multi-μ architecture, based on a specifically proposed Fault Tolerance Manager (FTManager), is then described. Finally, some considerations are made about the work being done and essential future developments.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.