999 resultados para Image inpainting
Resumo:
A fundamental question in visual neuroscience is how to represent image structure. The most common representational schemes rely on differential operators that compare adjacent image regions. While well-suited to encoding local relationships, such operators have significant drawbacks. Specifically, each filter's span is confounded with the size of its sub-fields, making it difficult to compare small regions across large distances. We find that such long-distance comparisons are more tolerant to common image transformations than purely local ones, suggesting they may provide a useful vocabulary for image encoding. . We introduce the "Dissociated Dipole," or "Sticks" operator, for encoding non-local image relationships. This operator de-couples filter span from sub-field size, enabling parametric movement between edge and region-based representation modes. We report on the perceptual plausibility of the operator, and the computational advantages of non-local encoding. Our results suggest that non-local encoding may be an effective scheme for representing image structure.
Resumo:
Co-training is a semi-supervised learning method that is designed to take advantage of the redundancy that is present when the object to be identified has multiple descriptions. Co-training is known to work well when the multiple descriptions are conditional independent given the class of the object. The presence of multiple descriptions of objects in the form of text, images, audio and video in multimedia applications appears to provide redundancy in the form that may be suitable for co-training. In this paper, we investigate the suitability of utilizing text and image data from the Web for co-training. We perform measurements to find indications of conditional independence in the texts and images obtained from the Web. Our measurements suggest that conditional independence is likely to be present in the data. Our experiments, within a relevance feedback framework to test whether a method that exploits the conditional independence outperforms methods that do not, also indicate that better performance can indeed be obtained by designing algorithms that exploit this form of the redundancy when it is present.
Resumo:
In the context of the round table the following topics related to image colour processing will be discussed: historical point of view. Studies of Aguilonius, Gerritsen, Newton and Maxwell. CIE standard (Commission International de lpsilaEclaraige). Colour models. RGB, HIS, etc. Colour segmentation based on HSI model. Industrial applications. Summary and discussion. At the end, video images showing the robustness of colour in front of B/W images will be presented
Resumo:
This paper describes a method to achieve the most relevant contours of an image. The presented method proposes to integrate the information of the local contours from chromatic components such as H, S and I, taking into account the criteria of coherence of the local contour orientation values obtained from each of these components. The process is based on parametrizing pixel by pixel the local contours (magnitude and orientation values) from the H, S and I images. This process is carried out individually for each chromatic component. If the criterion of dispersion of the obtained orientation values is high, this chromatic component will lose relevance. A final processing integrates the extracted contours of the three chromatic components, generating the so-called integrated contours image
Resumo:
Detecting changes between images of the same scene taken at different times is of great interest for monitoring and understanding the environment. It is widely used for on-land application but suffers from different constraints. Unfortunately, Change detection algorithms require highly accurate geometric and photometric registration. This requirement has precluded their use in underwater imagery in the past. In this paper, the change detection techniques available nowadays for on-land application were analyzed and a method to automatically detect the changes in sequences of underwater images is proposed. Target application scenarios are habitat restoration sites, or area monitoring after sudden impacts from hurricanes or ship groundings. The method is based on the creation of a 3D terrain model from one image sequence over an area of interest. This model allows for synthesizing textured views that correspond to the same viewpoints of a second image sequence. The generated views are photometrically matched and corrected against the corresponding frames from the second sequence. Standard change detection techniques are then applied to find areas of difference. Additionally, the paper shows that it is possible to detect false positives, resulting from non-rigid objects, by applying the same change detection method to the first sequence exclusively. The developed method was able to correctly find the changes between two challenging sequences of images from a coral reef taken one year apart and acquired with two different cameras
Resumo:
Mosaics have been commonly used as visual maps for undersea exploration and navigation. The position and orientation of an underwater vehicle can be calculated by integrating the apparent motion of the images which form the mosaic. A feature-based mosaicking method is proposed in this paper. The creation of the mosaic is accomplished in four stages: feature selection and matching, detection of points describing the dominant motion, homography computation and mosaic construction. In this work we demonstrate that the use of color and textures as discriminative properties of the image can improve, to a large extent, the accuracy of the constructed mosaic. The system is able to provide 3D metric information concerning the vehicle motion using the knowledge of the intrinsic parameters of the camera while integrating the measurements of an ultrasonic sensor. The experimental results of real images have been tested on the GARBI underwater vehicle
Resumo:
When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot
Resumo:
The registration of full 3-D models is an important task in computer vision. Range finders only reconstruct a partial view of the object. Many authors have proposed several techniques to register 3D surfaces from multiple views in which there are basically two aspects to consider. First, poor registration in which some sort of correspondences are established. Second, accurate registration in order to obtain a better solution. A survey of the most common techniques is presented and includes experimental results of some of them
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method