995 resultados para INCLUSIVE PROCESSES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social domains are classes of interpersonal processes each with distinct procedural rules underpinning mutual understanding, emotion regulation and action. We describe the features of three domains of family life – safety, attachment and discipline/expectation – and contrast them with exploratory processes in terms of the emotions expressed, the role of certainty versus uncertainty, and the degree of hierarchy in an interaction. We argue that everything that people say and do in family life carries information about the type of interaction they are engaged in – that is, the domain. However, sometimes what they say or how they behave does not make the domain clear, or participants in the social interactions are not in the same domain (there is a domain mismatch). This may result in misunderstandings, irresolvable arguments or distress. We describe how it is possible to identify domains and judge whether they are clear and unclear, and matched and mismatched, in observed family interactions and in accounts of family processes. This then provides a focus for treatment and helps to define criteria for evaluating outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geotechnical systems, such as landfills, mine tailings storage facilities (TSFs), slopes, and levees, are required to perform safely throughout their service life, which can span from decades for levees to “in perpetuity” for TSFs. The conventional design practice by geotechnical engineers for these systems utilizes the as-built material properties to predict its performance throughout the required service life. The implicit assumption in this design methodology is that the soil properties are stable through time. This is counter to long-term field observations of these systems, particularly where ecological processes such as plant, animal, biological, and geochemical activity are present. Plant roots can densify soil and/or increase hydraulic conductivity, burrowing animals can increase seepage, biological activity can strengthen soil, geochemical processes can increase stiffness, etc. The engineering soil properties naturally change as a stable ecological system is gradually established following initial construction, and these changes alter system performance. This paper presents an integrated perspective and new approach to this issue, considering ecological, geotechnical, and mining demands and constraints. A series of data sets and case histories are utilized to examine these issues and to propose a more integrated design approach, and consideration is given to future opportunities to manage engineered landscapes as ecological systems. We conclude that soil scientists and restoration ecologists must be engaged in initial project design and geotechnical engineers must be active in long-term management during the facility’s service life. For near-surface geotechnical structures in particular, this requires an interdisciplinary perspective and the embracing of soil as a living ecological system rather than an inert construction material.