998 resultados para Hydrological cycle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of urban land-surface models have been developed in recent years to satisfy the growing requirements for urban weather and climate interactions and prediction. These models vary considerably in their complexity and the processes that they represent. Although the models have been evaluated, the observational datasets have typically been of short duration and so are not suitable to assess the performance over the seasonal cycle. The First International Urban Land-Surface Model comparison used an observational dataset that spanned a period greater than a year, which enables an analysis over the seasonal cycle, whilst the variety of models that took part in the comparison allows the analysis to include a full range of model complexity. The results show that, in general, urban models do capture the seasonal cycle for each of the surface fluxes, but have larger errors in the summer months than in the winter. The net all-wave radiation has the smallest errors at all times of the year but with a negative bias. The latent heat flux and the net storage heat flux are also underestimated, whereas the sensible heat flux generally has a positive bias throughout the seasonal cycle. A representation of vegetation is a necessary, but not sufficient, condition for modelling the latent heat flux and associated sensible heat flux at all times of the year. Models that include a temporal variation in anthropogenic heat flux show some increased skill in the sensible heat flux at night during the winter, although their daytime values are consistently overestimated at all times of the year. Models that use the net all-wave radiation to determine the net storage heat flux have the best agreement with observed values of this flux during the daytime in summer, but perform worse during the winter months. The latter could result from a bias of summer periods in the observational datasets used to derive the relations with net all-wave radiation. Apart from these models, all of the other model categories considered in the analysis result in a mean net storage heat flux that is close to zero throughout the seasonal cycle, which is not seen in the observations. Models with a simple treatment of the physical processes generally perform at least as well as models with greater complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kalahari region has become a major source of Quaternary palaeoenvironmental data derived primarily from the analysis of geomorphological proxies of environmental change. One suite of data, from palaeolacustrine landforms, has recently provided a new record of major hydrological changes in the last 150 ka [Burrough, S. L., Thomas, D. S. G., Bailey, R. M., 2009. Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, in press.]. Here we present an improved analysis of the drivers and feedbacks of lake level change, utilising information from three main sources: data from the lake system itself, from analyses of other late Quaternary records within the region and from climate modelling. Simulations using the Hadley Centre coupled climate model, HadCM3, suggest that once triggered, the lake body was large enough to potentially affect both local and regional climates. Surface waters and their interactions with the climate are therefore an important component of environmental dynamics during the late Quaternary. Through its capacity to couple Middle Kalahari environments to distant forcing mechanisms and to itself force environmental change, we demonstrate that the existence or absence of megalake Makgadikgadi adds a new level of complexity to the interpretations of environmental proxy records in southern Africa's summer rainfall zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The UK has adopted legally binding carbon reduction targets of 34% by 2020 and 80% by 2050 (measured against the 1990 baseline). Buildings are estimated to be responsible for more than 50% of greenhouse gas (GHG) emissions in the UK. These consist of both operational, produced during use, and embodied, produced during manufacture of materials and components, and during construction, refurbishments and demolition. A brief assessment suggests that it is unlikely that UK emission reduction targets can be met without substantial reductions in both Oc and Ec. Oc occurs over the lifetime of a building whereas the bulk of Ec occurs at the start of a building’s life. A time value for emissions could influence the decision making process when it comes to comparing mitigation measures which have benefits that occur at different times. An example might be the choice between building construction using low Ec construction materials versus building construction using high Ec construction materials but with lower Oc, although the use of high Ec materials does not necessarily imply a lower Oc. Particular time related issues examined here are: the urgency of the need to achieve large emissions reductions during the next 10 to 20 years; the earlier effective action is taken, the less costly it will be; future reduction in carbon intensity of energy supply; the carbon cycle and relationship between the release of GHG’s and their subsequent concentrations in the atmosphere. An equation is proposed, which weights emissions according to when they occur during the building life cycle, and which effectively increases Ec as a proportion of the total, suggesting that reducing Ec is likely to be more beneficial, in terms of climate change, for most new buildings. Thus, giving higher priority to Ec reductions is likely to result in a bigger positive impact on climate change and mitigation costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium range flood forecasting activities, driven by various meteorological forecasts ranging from high resolution deterministic forecasts to low spatial resolution ensemble prediction systems, share a major challenge in the appropriateness and design of performance measures. In this paper possible limitations of some traditional hydrological and meteorological prediction quality and verification measures are identified. Some simple modifications are applied in order to circumvent the problem of the autocorrelation dominating river discharge time-series and in order to create a benchmark model enabling the decision makers to evaluate the forecast quality and the model quality. Although the performance period is quite short the advantage of a simple cost-loss function as a measure of forecast quality can be demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood prediction systems rely on good quality precipitation input data and forecasts to drive hydrological models. Most precipitation data comes from daily stations with a good spatial coverage. However, some flood events occur on sub-daily time scales and flood prediction systems could benefit from using models calibrated on the same time scale. This study compares precipitation data aggregated from hourly stations (HP) and data disaggregated from daily stations (DP) with 6-hourly forecasts from ECMWF over the time period 1 October 2006–31 December 2009. The HP and DP data sets were then used to calibrate two hydrological models, LISFLOOD-RR and HBV, and the latter was used in a flood case study. The HP scored better than the DP when evaluated against the forecast for lead times up to 4 days. However, this was not translated in the same way to the hydrological modelling, where the models gave similar scores for simulated runoff with the two datasets. The flood forecasting study showed that both datasets gave similar hit rates whereas the HP data set gave much smaller false alarm rates (FAR). This indicates that using sub-daily precipitation in the calibration and initiation of hydrological models can improve flood forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global river routing scheme coupled to the ECMWF land surface model is implemented and tested within the framework of the Global Soil Wetness Project II, to evaluate the feasibility of modelling global river runoff at a daily time scale. The exercise is designed to provide benchmark river runoff predictions needed to verify the land surface model. Ten years of daily runoff produced by the HTESSEL land surface scheme is input into the TRIP2 river routing scheme in order to generate daily river runoff. These are then compared to river runoff observations from the Global Runoff Data Centre (GRDC) in order to evaluate the potential and the limitations. A notable source of inaccuracy is bias between observed and modelled discharges which is not primarily due to the modelling system but instead of to the forcing and quality of observations and seems uncorrelated to the river catchment size. A global sensitivity analysis and Generalised Likelihood Uncertainty Estimation (GLUE) uncertainty analysis are applied to the global routing model. The ground water delay parameter is identified as being the most sensitive calibration parameter. Significant uncertainties are found in results, and those due to parameterisation of the routing model are quantified. The difficulty involved in parameterising global river discharge models is discussed. Detailed river runoff simulations are shown for the river Danube, which match well observed river runoff in upstream river transects. Results show that although there are errors in runoff predictions, model results are encouraging and certainly indicative of useful runoff predictions, particularly for the purpose of verifying the land surface scheme hydrologicly. Potential of this modelling system on future applications such as river runoff forecasting and climate impact studies is highlighted. Copyright © 2009 Royal Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tests for business cycle asymmetries are developed for Markov-switching autoregressive models. The tests of deepness, steepness, and sharpness are Wald statistics, which have standard asymptotics. For the standard two-regime model of expansions and contractions, deepness is shown to imply sharpness (and vice versa), whereas the process is always nonsteep. Two and three-state models of U.S. GNP growth are used to illustrate the approach, along with models of U.S. investment and consumption growth. The robustness of the tests to model misspecification, and the effects of regime-dependent heteroscedasticity, are investigated.