999 resultados para Holocene Transition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3-and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4grasses and C3herbs from 41–20ka. A peak in C4abundance during the Last Glacial Maximum (LGM, ∼21ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δD values over the entire record indicate that the majority of variability in leaf wax δD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δD signatures. However, positive δD deviations from the observed δ13C–δD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δD signatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructions of salinity are used to diagnose changes in the hydrological cycle and ocean circulation. A widely used method of determining past salinity uses oxygen isotope (δOw) residuals after the extraction of the global ice volume and temperature components. This method relies on a constant relationship between δOw and salinity throughout time. Here we use the isotope-enabled fully coupled General Circulation Model (GCM) HadCM3 to test the application of spatially and time-independent relationships in the reconstruction of past ocean salinity. Simulations of the Late Holocene (LH), Last Glacial Maximum (LGM), and Last Interglacial (LIG) climates are performed and benchmarked against existing compilations of stable oxygen isotopes in carbonates (δOc), which primarily reflect δOw and temperature. We find that HadCM3 produces an accurate representation of the surface ocean δOc distribution for the LH and LGM. Our simulations show considerable variability in spatial and temporal δOw-salinity relationships. Spatial gradients are generally shallower but within ∼50% of the actual simulated LH to LGM and LH to LIG temporal gradients and temporal gradients calculated from multi-decadal variability are generally shallower than both spatial and actual simulated gradients. The largest sources of uncertainty in salinity reconstructions are found to be caused by changes in regional freshwater budgets, ocean circulation, and sea ice regimes. These can cause errors in salinity estimates exceeding 4 psu. Our results suggest that paleosalinity reconstructions in the South Atlantic, Indian and Tropical Pacific Oceans should be most robust, since these regions exhibit relatively constant δOw-salinity relationships across spatial and temporal scales. Largest uncertainties will affect North Atlantic and high latitude paleosalinity reconstructions. Finally, the results show that it is difficult to generate reliable salinity estimates for regions of dynamic oceanography, such as the North Atlantic, without additional constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaired mechanosensing leads to heart failure and we have previously shown that a decreased ratio of cytoplasmic to nuclear CSRP3/Muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. Here we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μM blebbistatin resulted in a ∼3 fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signaling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme-oxygenase1 (HO-1) activity with PPZII blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea pig model of angiotensin II infusion (400 ng/kg/min) over 12 weeks. Using subcellular fractionation we showed that the MLP ratio increased 88% (n = 4, P < 0.01) during compensated hypertrophy, but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01 n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the Mesolithic-Neolithic transition in the Channel Islands. It presents a new synthesis of all known evidence from the islands c. 5000-4300 BC, including several new excavations as well as find spot sites that have not previously been collated. It also summarises – in English – a large body of contemporary material from north-west France. The paper presents a new high-resolution sea level model for the region, shedding light on the formation of the Channel Islands from 9000-4000 BC. Through comparison with contemporary sites in mainland France, an argument is made suggesting that incoming migrants from the mainland and the small indigenous population of the islands were both involved in the transition. It is also argued that, as a result of the fact the Channel Islands witnessed a very different trajectory of change to that seen in Britain and Ireland c. 5000-3500 BC, this small group of islands has a great deal to tell us about the arrival of the Neolithic more widely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June–July–August (JJA) season and throughout the entire annual cycle by 2–3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were −0.22 at 1850 CE, −0.11 at 2 ka BP, and −0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of −0.83 at 1850 CE, −0.58 at 2 ka BP, and −0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined micropaleontological and geochemical analyses of the high-sedimentation gravity core M-4G provided new centennial-scale paleoceanographic data for sapropel S1 deposition in the NE Aegean Sea during the Holocene Climatic Optimum. Sapropel layer S1a (10.2–8.0 ka) was deposited in dysoxic to oxic bottom waters characterized by a high abundance of benthic foraminiferal species tolerating surface sediment and/or pore water oxygen depletion (e.g., Chilostomella mediterranensis, Globobulimina affinis), and the presence of Uvigerina mediterranea, which thrives in oxic mesotrophic-eutrophic environments. Preservation of organic matter (OM) is inferred based on high organic carbon as well as loliolide and isololiolide contents, while the biomarker record and the abundances of eutrophic planktonic foraminifera document enhanced productivity. High inputs of terrigenous OM are attributed to north Aegean borderland riverine inputs. Both alkenone-based sea surface temperatures (SSTs) and δO18G. bulloides records indicate cooling at 8.2 ka (S1a) and ~7.8 ka (S1 interruption). Sapropelic layer S1b (7.7–6.4 ka) is characterized by rather oxic conditions; abundances of foraminiferal species tolerant to oxygen depletion are very low compared with the U. mediterranea rise. Strongly fluctuating SSTs demonstrate repeated cooling and associated dense water formation, with a major event at 7.4 ka followed by cold spells at 7.0, 6.8, and 6.5 ka. The prominent rise of the carbon preference index within the S1b layer indicates the delivery of less degraded terrestrial OM. The increase of algal biomarkers, labile OM-feeding foraminifera and eutrophic planktonic species pinpoints an enhanced in situ marine productivity, promoted by more efficient vertical convection due to repeated cold events. The associated contributions of labile marine OM along with fresher terrestrial OM inputs after ~7.7 ka imply sources alternative/additional to the north Aegean riverine borderland sources for the influx of organic matter in the south Limnos Basin, plausibly related to the inflow of highly productive Marmara/Black Sea waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to summarise epidemiological information about the distribution of dental caries among Indigenous peoples in Brazil. The authors also present a case study of a specific group of Xavante Indians, one of the most numerous of Brazil`s Indigenous peoples, describing how their oral health has deteriorated over recent decades, and showing how an oral health programme is attempting to reverse the present trend of increase in caries. The programme at Etenheritipa Xavante village incorporated three principal components: educational, preventive, and clinical. From the beginning, the programme included epidemiological record keeping for monitoring the level of caries in the population. Transversal studies of the condition of oral health among the Xavante of Etenheritipa were undertaken in 1999, 2004, and 2007. In the period from 2004 to 2007 the DMFS values in the 11-15 age cohort had a significant reduction in caries experience. The mean DMFS score fell from 4.95 in 2004 to 2.39 in 2007 (p<0.01). An increase in the percent of individuals who were free from caries was also noted: in 1999, 20% of adolescents 11-15 had no caries; in 2007, the proportion had risen to 47%. The Xavante case is a prime example of the transition in oral health that is taking place among the Indigenous peoples of the Americas, and it highlights the importance of oral health promotion through preventive measures such as access to fluoridation and basic care in reducing the inequality between Indians and non-Indians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The landfall of Cyclone Catarina on the Brazilian coast in March 2004 became known as the first documented hurricane in the South Atlantic Ocean, promoting a new view oil how large-scale features can contribute to tropical transition. The aim of this paper is to put the large-scale circulation associated with Catarina`s transition in climate perspective. This is discussed in the light of a robust pattern of spatial correlations between thermodynamic and dynamic variables of importance for hurricane formation. A discussion on how transition mechanisms respond to the present-day circulation is presented. These associations help in understanding why Catarina was formed in a region previously thought to be hurricane-free. Catarina developed over a large-scale area of thermodynamically favourable air/sea temperature contrast. This aspect explains the paradox that such a rare system developed when the sea surface temperature was slightly below average. But, although thermodynamics played an important role, it is apparent that Catarina would not have formed without the key dynamic interplay triggered by a high latitude blocking. The blocking was associated with an extreme positive phase of the Southern Annular Mode (SAM) both hemispherically and locally, and the nearby area where Catarina developed is found to be more cyclonic during the positive phase of the SAM. A conceptual model is developed and a `South Atlantic index` is introduced as a useful diagnostic of potential conditions leading to tropical transition in the area, where large-scale indices indicate trends towards more favourable atmospheric conditions for tropical cyclone formation. Copyright (c) 2008 Royal Meteorological Society