999 resultados para Helicobacter Infections -- metabolism
Resumo:
Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy ( approximately 80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production ( approximately 6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying assumptions.
Resumo:
Mucosal immunity to the enteric pathogen Shigella flexneri is mediated by secretory IgA (S-IgA) antibodies directed against the O-antigen (O-Ag) side chain of lipopolysaccharide. While secretory antibodies against the O-Ag are known to prevent bacterial invasion of the intestinal epithelium, the mechanisms by which this occurs are not fully understood. In this study, we report that the binding of a murine monoclonal IgA (IgAC5) to the O-Ag of S. flexneri serotype 5a suppresses activity of the type 3 secretion (T3S) system, which is necessary for S. flexneri to gain entry into intestinal epithelial cells. IgAC5's effects on the T3S were rapid (5 to 15 min) and were coincident with a partial reduction in the bacterial membrane potential and a decrease in intracellular ATP levels. Activity of the T3S system returned to normal levels 45 to 90 min following antibody treatment, demonstrating that IgAC5's effects were transient. Nonetheless, these data suggest a model in which the association of IgA with the O-Ag of S. flexneri partially de-energizes the T3S system and temporarily renders the bacterium incapable of invading intestinal epithelial cells. IMPORTANCE: Secretory IgA (S-IgA) serves as the first line of defense against enteric infections. However, despite its well-recognized role in mucosal immunity, relatively little is known at the molecular level about how this class of antibody functions to prevent pathogenic bacteria from penetrating the epithelial barrier. It is generally assumed that S-IgA functions primarily by "immune exclusion," a phenomenon in which the antibody binds to microbial surface antigens and thereby promotes bacterial agglutination, entrapment in mucus, and physical clearance from the gastrointestinal tract via peristalsis. The results of the present study suggest that in addition to serving as a physical barrier, S-IgA may have a direct impact on the ability of microbial pathogens to secrete virulence factors required for invasion of intestinal epithelial cells.
Resumo:
Background: Sexually transmitted infections (STIs) are among the frequent risks encountered by travelers. Efficient interventions are needed to improve the understanding of the risks of STIs. We investigated the potential benefits of a motivational brief intervention (BI) and the provision of condoms on the engagement in unprotected casual sex.Methods: 3-arm randomized controlled trial performed among single travelers aged 18-44 years visiting a travel clinic in Switzerland. The main outcomes were the prevalence of casual unprotected sexual intercourse and their predictors.Results: 5148 eligible travelers were seen from 2006 to 2008. 1681 agreed to participate and 1115 subjects (66%) completed the study. 184/1115 (17%) had a casual sexual relationship abroad and overall 46/1115 (4.1%) had inconsistently protected sexual relations. Women (adjusted OR 2.7 [95% CI 1.4-5.6]) and travelers with a history of past STI (adjusted OR 2.8 [95% CI 1.1-7.4]) had more frequent casual sexual relationships without consistent protection. Regarding the effect of our intervention, the prevalence of subjects using condoms inconsistently was 28% (95% CI 16-40) in the motivational BI group, 24% (95% CI 10-37) in the condoms group and 24% (95% CI 14-33) in the control group (p = 0.7).Conclusion: This study showed that a motivational brief intervention and/or the provision of free condoms did not modify risky sexual behavior of young travelers. The rate of inconsistently protected sexual relationships during travel was however lower than expected
Resumo:
Les règles d'hygiène de base doivent être respectées par tous les acteurs de la santé, dans les institutions de soins, mais aussi dans les cabinets. Elles constituent un des piliers de la sécurité et de la qualité du traitement.
Resumo:
BACKGROUND: The present study was designed to evaluate surgeons' strategies and adherence to preventive measures against surgical site infections (SSIs). MATERIALS AND METHODS: All surgeons participating in a prospective Swiss multicentric surveillance program for SSIs received a questionnaire developed from the 2008 National (United Kingdom) Institute for Health and Clinical Excellence (NICE) clinical guidelines on prevention and treatment of SSIs. We focused on perioperative management and surgical technique in hernia surgery, cholecystectomy, appendectomy, and colon surgery (COL). RESULTS: Forty-five of 50 surgeons contacted (90%) responded. Smoking cessation and nutritional screening are regularly propagated by 1/3 and 1/2 of surgeons, respectively. Thirty-eight percent practice bowel preparation before COL. Preoperative hair removal is routinely (90%) performed in the operating room with electric clippers. About 50% administer antibiotic prophylaxis within 30 min before incision. Intra-abdominal drains are common after COL (43%). Two thirds of respondents apply nonocclusive wound dressings that are manipulated after hand disinfection (87%). Dressings are usually changed on postoperative day (POD) 2 (75%), and wounds remain undressed on POD 2-3 or 4-5 (36% each). CONCLUSIONS: Surgeons' strategies to prevent SSIs still differ widely. The adherence to the current NICE guidelines is low for many procedures regardless of the available level of evidence. Further research should provide convincing data in order to justify standardization of perioperative management.
Resumo:
Airborne transmission of Pneumocystis sp. from host to host has been demonstrated in rodent models and several observations suggest that interindividual transmission occurs in humans. Moreover, it is accepted that the Pneumocystis organisms infecting each mammalian species are host specific and that the hypothesis of an animal reservoir for Pneumocystis jirovecii (P. jirovecii), the human-specific Pneumocystis species, can be excluded. An exosaprophytic form of the fungus cannot be strictly ruled out. However, these data point toward the potential for the specific host to serve as its own reservoir and for Pneumocystis infection in humans as an anthroponosis with humans as a reservoir for P. jirovecii. This review highlights the main data on host-to-host transmission of Pneumocystis in rodent models and in humans by the airborne route and provides a rationale for considering the occurrence of nosocomial infections and measures for their prevention
Resumo:
BACKGROUND: Dietary acid charge enhances bone loss. Bicarbonate or alkali diet decreases bone resorption in humans. We compared the effect of an alkaline mineral water, rich in bicarbonate, with that of an acid one, rich in calcium only, on bone markers, in young women with a normal calcium intake. METHODS: This study compared water A (per litre: 520 mg Ca, 291 mg HCO(3)(-), 1160 mg SO(4)(-), Potential Renal Acid load (PRAL) +9.2 mEq) with water B (per litre: 547 mg Ca, 2172 mg HCO(3)(-), 9 mg SO(4)(-), PRAL -11.2 mEq). 30 female dieticians aged 26.3 yrs (SD 7.3) were randomized into two groups, followed an identical weighed, balanced diet (965 mg Ca) and drank 1.5 l/d of the assigned water. Changes in blood and urine electrolytes, C-telopeptides (CTX), urinary pH and bicarbonate, and serum PTH were measured after 2 and 4 weeks. RESULTS: The two groups were not different at baseline, and showed a similar increase in urinary calcium excretion. Urinary pH and bicarbonate excretion increased with water B, but not with water A. PTH (p=0.022) and S-CTX (p=0.023) decreased with water B but not with water A. CONCLUSION: In calcium sufficiency, the acid calcium-rich water had no effect on bone resorption, while the alkaline water rich in bicarbonate led to a significant decrease of PTH and of S-CTX.
Resumo:
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.