994 resultados para Harrison, Clifford.
Resumo:
Lake records from northern Eurasia show regionally coherent patterns of changes during the late Quaternary. Lakes peripheral to the Scandinavian ice sheet were lower than those today but lakes in the Mediterranean zone were high at the glacial maximum, reflecting the dominance of glacial anticyclonic conditions in northern Europe and a southward shift of the Westerlies. The influence of the glacial anticyclonic circulation attenuated through the late glacial period, and the Westerlies gradually shifted northward, such that drier conditions south of the ice sheet were confined to a progressively narrower zone and the Mediterranean became drier. The early Holocene shows a gradual shift to conditions wetter than present in central Asia, associated with the expanded Asian monsoon, and in the Mediterranean, in response to local, monsoon-type circulation. There is no evidence of mid-continental aridity in northern Eurasia during the mid-Holocene. In contrast, the circum-Baltic region was drier, reflecting the increased incidence of blocking anticyclones centered on Scandinavia in summer. There is a gradual transition to modern conditions after ca. 5000 yr B.P. Although these broad-scale patterns are interrupted by shorter term fluctuations, the long-term trends in lake behavior show a clear response to changes in insolation and glaciation.
Resumo:
Changes in lake status, a measure of relative water depth or lake level, have been reconstructed from geological and biological evidence for 87 sites in northern Europe. During the early Holocene. the lakes show conditions similar to or drier than present in a broad band across southern Britain, southern Scandinavia and into the eastern Baltic and wetter conditions along the west coast and in central Europe. This pattern is consistent with the effects of a glacial anticyclone over the Scandinavian Ice Sheet, namely enhanced southwesterly flow along the west coast and strengthened easterlies south of the ice. After c, 8000 BP a different lake status pattern was established. with conditions drier than present over much of northern Europe. Lakes higher than today were confined to the far north, the west coast, eastern Finland and western Russia. This pattern gradually attenuated after 4000 BP. Differences in lake status during the mid- to late Holocene are consistent with a strengthening of the blocking anticyclone over the Baltic Sea in summer. resulting in more meridional circulation than today. This strengthening of the blocking anticyclone during the mid-Holocene is interpreted as a consequence of insolation changes, enhanced by the fact that the Baltic Sea was larger than present.
Resumo:
Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.
Resumo:
The last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord