996 resultados para HP Model
Resumo:
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite robustness in terms change of the hyperparamaters. The spatial correlations are appeared in both intercepts and slopes.
Resumo:
A spatial process observed over a lattice or a set of irregular regions is usually modeled using a conditionally autoregressive (CAR) model. The neighborhoods within a CAR model are generally formed deterministically using the inter-distances or boundaries between the regions. An extension of CAR model is proposed in this article where the selection of the neighborhood depends on unknown parameter(s). This extension is called a Stochastic Neighborhood CAR (SNCAR) model. The resulting model shows flexibility in accurately estimating covariance structures for data generated from a variety of spatial covariance models. Specific examples are illustrated using data generated from some common spatial covariance functions as well as real data concerning radioactive contamination of the soil in Switzerland after the Chernobyl accident.
Resumo:
Too often the relationship between client and external consultants is perceived as one of protagonist versus antogonist. Stories on dramatic, failed consultancies abound, as do related anecdotal quips. A contributing factor to many "apparently" failed consultancies is a poor appreciation by both the client and consultant of the client's true goals for the project and how to assess progress toward these goals. This paper presents and analyses a measurement model for assessing client success when engaging an external consultant. Three main areas of assessment are identified: (1) the consultant;s recommendations, (2) client learning, and (3) consultant performance. Engagement success is emperically measured along these dimensions through a series of case studies and a subsequent survey of clients and consultants involved in 85 computer-based information system selection projects. Validation fo the model constructs suggests the existence of six distinct and individually important dimensions of engagement success. both clients and consultants are encouraged to attend to these dimensions in pre-engagement proposal and selection processes, and post-engagement evaluation of outcomes.
Resumo:
Aim The aim of this paper was to discuss the potential development of a conceptual model of knowledge integration pertinent to critical care nursing practice. A review of the literature identified that reflective practice appeared to be at the forefront of professional development. Background It could be argued that advancing practice in critical care has been superseded by the advanced practice agenda. Some would suggest that advancing practice is focused on the core attributes of an individual’s practice, which then leads onto advanced practice status. However, advancing practice is more of a process than identifiable skills and as such is often negated when viewing the development of practitioners to the advanced practice level. For example, practice development initiatives can be seen as advancing practice for the masses, which ensures that practitioners are following the same level and practice of care. The question here is, are they developing individually? Relevance to clinical practice What this paper presents is that reflection may not be best suited to advancing practice if the individual practitioner does not have a sound knowledge base both theoretically and experientially. The knowledge integration model presented in this study uses multiple learning strategies that are focused in practice to develop practice, e.g. the use of work-based learning and clinical supervision. To demonstrate the models application, an exemplar of an issue from practice shows its relevance from a practical perspective. Conclusions In conclusion, further knowledge acquisition and its relationship with previously held theory and experience will enable individual practitioners to advance their own practice as well as being a resource for others.
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.
Resumo:
In this paper we present a unified sequential Monte Carlo (SMC) framework for performing sequential experimental design for discriminating between a set of models. The model discrimination utility that we advocate is fully Bayesian and based upon the mutual information. SMC provides a convenient way to estimate the mutual information. Our experience suggests that the approach works well on either a set of discrete or continuous models and outperforms other model discrimination approaches.