999 resultados para Gravitational-field
Resumo:
In order to shed light on the main physical processes controlling fragmentation of massive dense cores, we present a uniform study of the density structure of 19 massive dense cores, selected to be at similar evolutionary stages, for which their relative fragmentation level was assessed in a previous work. We inferred the density structure of the 19 cores through a simultaneous fit of the radial intensity profiles at 450 and 850 μm (or 1.2 mm in two cases) and the spectral energy distribution, assuming spherical symmetry and that the density and temperature of the cores decrease with radius following power-laws. Even though the estimated fragmentation level is strictly speaking a lower limit, its relative value is significant and several trends could be explored with our data. We find a weak (inverse) trend of fragmentation level and density power-law index, with steeper density profiles tending to show lower fragmentation, and vice versa. In addition, we find a trend of fragmentation increasing with density within a given radius, which arises from a combination of flat density profile and high central density and is consistent with Jeans fragmentation. We considered the effects of rotational-to-gravitational energy ratio, non-thermal velocity dispersion, and turbulence mode on the density structure of the cores, and found that compressive turbulence seems to yield higher central densities. Finally, a possible explanation for the origin of cores with concentrated density profiles, which are the cores showing no fragmentation, could be related with a strong magnetic field, consistent with the outcome of radiation magnetohydrodynamic simulations.
Resumo:
This article focuses on the analysis of the regulatory framework of citizen participation in the local government, which organises direct and participatory democracy at the local level, and identifies the laws and mechanisms through which the constitutional requirements for participation are accomplished. Mu nicipalities, the authority closest to citizens, are the best level of government since they directly involve civil society in the decision-making process experiencing the scope and appropriateness of the instruments by which it is channeled.
Resumo:
This paper proposes a calibration method which can be utilized for the analysis of SEM images. The field of application of the developed method is a calculation of surface potential distribution of biased silicon edgeless detector. The suggested processing of the data collected by SEM consists of several stages and takes into account different aspects affecting the SEM image. The calibration method doesn’t pretend to be precise but at the same time it gives the basics of potential distribution when the different biasing voltages applied to the detector.
Resumo:
This Master’s Thesis work reports about electric field distribution in recently developed silicon edgeless detector with a new current terminating structure. This structure enables the essential reduction of insensitive detector area as well as allows separation of the current flowing through the active area from the current flowing at the cut edge. The reliable operation of this detector is strongly needed due to the installation inside LHC. In accordance with formulated problems SEM was used as an investigation tool for collecting the data about electric field distribution.
Resumo:
We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration
Resumo:
Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent experiments on n-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnold tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac+dc driving.
Resumo:
We present an analytical procedure to perform the local noise analysis of a semiconductor junction when both the drift and diffusive parts of the current are important. The method takes into account space-inhomogeneous and hot-carriers conditions in the framework of the drift-diffusion model, and it can be effectively applied to the local noise analysis of different devices: n+nn+ diodes, Schottky barrier diodes, field-effect transistors, etc., operating under strongly inhomogeneous distributions of the electric field and charge concentration
Resumo:
A theoretical model for the noise properties of n+nn+ diodes in the drift-diffusion framework is presented. In contrast with previous approaches, our model incorporates both the drift and diffusive parts of the current under inhomogeneous and hot-carrier conditions. Closed analytical expressions describing the transport and noise characteristics of submicrometer n+nn+ diodes, in which the diode base (n part) and the contacts (n+ parts) are coupled in a self-consistent way, are obtained
Resumo:
We have analyzed the shot noise of electron emission under strong applied electric fields within the Landauer-Bttiker scheme. In contrast to the previous studies of vacuum-tube emitters, we show that in new generation electron emitters, scaled down to the nanometer dimensions, shot noise much smaller than the Schottky noise is observable. Carbon nanotube field emitters are among possible candidates to observe the effect of shot-noise suppression caused by quantum partitioning.