995 resultados para Germoplasma %% Forestry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent to which species are plastic in the timing of their reproductive events relative to phenology suggests how climate change might affect their demography. An ecological mismatch between the timing of hatch for avian species and the peak availability in quality and quantity of forage for rapidly growing offspring might ultimately affect recruitment to the breeding population unless individuals can adjust the timing of breeding to adapt to changing phenology. We evaluated effects of goose density, hatch timing relative to forage plant phenology, and weather indices on annual growth of pre-fledging Canada geese (Branta canadensis) from 1993-2010 at Akimiski Island, Nunavut. We found effects of both density and hatch timing relative to forage plant phenology; the earlier that eggs hatched relative to forage plant phenology, the larger the mean gosling size near fledging. Goslings were smallest in years when hatch was latest relative to forage plant phenology, and when local abundance of breeding adults was highest. We found no evidence for a trend in relative hatch timing, but it was apparent that in early springs, Canada geese tended to hatch later relative to vegetation phenology, suggesting that geese were not always able to adjust the timing of nesting as rapidly as vegetation phenology was advanced. Analyses using forage biomass information revealed a positive relationship between gosling size and per capita biomass availability, suggesting a causal mechanism for the density effect. The effects of weather parameters explained additional variation in mean annual gosling size, although total June and July rainfall had a small additive effect on gosling size. Modelling of annual first-year survival probability using mean annual gosling size as an annual covariate revealed a positive relationship, suggesting that reduced gosling growth negatively impacts recruitment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among shrubland- and young forest-nesting bird species in North America, Golden-winged Warblers (Vermivora chrysoptera) are one of the most rapidly declining partly because of limited nesting habitat. Creation and management of high quality vegetation communities used for nesting are needed to reduce declines. Thus, we examined whether common characteristics could be managed across much of the Golden-winged Warbler’s breeding range to increase daily survival rate (DSR) of nests. We monitored 388 nests on 62 sites throughout Minnesota, Wisconsin, New York, North Carolina, Pennsylvania, Tennessee, and West Virginia. We evaluated competing DSR models in spatial-temporal (dominant vegetation type, population segment, state, and year), intraseasonal (nest stage and time-within-season), and vegetation model suites. The best-supported DSR models among the three model suites suggested potential associations between daily survival rate of nests and state, time-within-season, percent grass and Rubus cover within 1 m of the nest, and distance to later successional forest edge. Overall, grass cover (negative association with DSR above 50%) and Rubus cover (DSR lowest at about 30%) within 1 m of the nest and distance to later successional forest edge (negative association with DSR) may represent common management targets across our states for increasing Golden-winged Warbler DSR, particularly in the Appalachian Mountains population segment. Context-specific adjustments to management strategies, such as in wetlands or areas of overlap with Blue-winged Warblers (Vermivora cyanoptera), may be necessary to increase DSR for Golden-winged Warblers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Once abundant, the Newfoundland Gray-cheeked Thrush (Catharus minimus minimus) has declined by as much as 95% since 1975. Underlying cause(s) of this population collapse are not known, although hypotheses include loss of winter habitat and the introduction of red squirrels (Tamiasciurus hudsonicus) to Newfoundland. Uncertainties regarding habitat needs are also extensive, and these knowledge gaps are an impediment to conservation. We investigated neighborhood (i.e., within 115 m [4.1 ha]) and landscape scale (i.e., within 1250 m [490.8 ha]) habitat associations of Gray-cheeked Thrush in a 200-km² study area in the Long Range Mountains of western Newfoundland, where elevations range from 300-600 m and landcover was a matrix of old growth fir forest, 6- to 8-year-old clearcuts, coniferous scrub, bogs, and barrens. Thrushes were restricted to elevations above ~375 m, and occurrence was strongly positively related to elevation. Occurrence was also positively related to cover of tall scrub forest at the neighborhood scale, and at the landscape scale showed curvilinear relations with the proportion of both tall scrub and old growth forest that peaked with intermediate amounts of cover. Occurrence of thrushes was also highest when clearcuts made up 60%-70% of neighborhood landcover, but was negatively related to cover of clearcuts in the broader landscape. Finally, occurrence was highest in areas having 50% cover of partially harvested forest (strip cuts or row cuts) at the neighborhood scale, but because this treatment was limited to one small portion of the study area, this finding may be spurious. Taken together, our results suggest selection for mixed habitats and sensitivity to both neighborhood and landscape-scale habitat. More research is needed on responses of thrushes to forestry, including use of older clearcuts, partially harvested stands, and precommercially thinned clearcuts. Finally, restriction of thrushes to higher elevations is consistent with the hypothesis that they have been impacted by squirrels, because squirrels were rare or absent at these elevations.

Relevância:

10.00% 10.00%

Publicador: