998 resultados para Geothermal engineering.
Resumo:
A series of organic D-pi-A sensitizers composed of different triarylamine donors in conjugation with the thienothiophene unit and cyanoacrylic acid as an acceptor has been synthesized at a moderate yield. Through tuning the number of methoxy substituents on the triphenylamine donor, we have gradually red-shifted the absorption of sensitizers to enhance device efficiencies.
Resumo:
To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly(L-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%.
Resumo:
A new strategy for preparing ammonium-type ionic liquid (IL) by acid/base neutralization reaction was proposed. The method contributed to preparing hydroxide-based ammonium IL and resulting task specific ionic liquid (TSIL) with high purity using a low-costly and environment-friendly synthetic. route. Halide contamination in the prepared ILs could be markedly decreased than those prepared by well-established anion metathesis method. Moreover, some novel TSILs composed of cations and anions with big steric hindrances could be prepared by this method. Physicochemical properties of the bifunctional TSILs, i.e., density, water content, decomposition temperature, and munal solubility, were also studied in this article.
Resumo:
A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-M-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was similar to 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces.
Resumo:
With the presence of biopolymer-sodium alginate as additive, Eu-doped ZnO (zinc oxide) urchins consisting of nanorods were synthesized through a hydrothermal route. X-ray diffraction pattern makes evident the absence of phase other than wurtzite ZnO. Upon excited by 325 nm xenon laser, such nanostructured Eu-doped ZnO urchins emit white light, which originates from the luminescence of ZnO and the intra-4f transitions of Eu3+ ions. Besides acting as stabilizing agent, sodium alginate may also sensitize the Eu3+ ions in the nanostructures and facilitate the energy transfer from the host to Eu3+ ions. (c) 2006 American Institute of Physics.
Resumo:
In this study, we describe composite scaffolds composed of synthetic and natural materials with physicochemical properties suitable for tissue engineering applications. Fibrous scaffolds were co-electrospun from a blend of a synthetic biodegradable polymer (poly(lactic-co-glycolic acid), PLGA, 10% solution) and two natural proteins, gelatin (denatured collagen, 8% solution) and (x-elastin (20% solution) at ratios of 3:1:2 and 2:2:2 (v/v/v). The resulting PLGA-gelatin-elastin (PGE) fibers were homogeneous in appearance with an average diameter of 380 80 mn, which was considerably smaller than fibers made under identical conditions from the starting materials (PLGA, 780 +/- 200 nm; gelatin, 447 +/- 1.23 nm; elastin, 1060 170 nm). Upon hydration, PGE fibers swelled to an average fiber diameter of 963 +/- 132 nm, but did not disintegrate. Importantly, PGE scaffolds were stable in an aqueous environment without crosslinking, and were more elastic than those made of pure elastin fibers. To investigate the cytocompatibility of PGE, we cultured H9c2 rat cardiac myoblasts and rat bone marrow stromal cells (BMSCs) on fibrous PGE scaffolds. We found that myoblasts grew equally as well or slightly better on the scaffolds than on tissue-culture plastic. Microscopic evaluation confirmed that myoblasts reached confluence on the scaffold surfaces while simultaneously growing into the scaffolds.