1000 resultados para Functional grups


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia is one of the major causes of damage to the fetal and neonatal brain and cardiac functions. in earlier studies we have reported the brain damage caused by hypoxia and resusciation with oxygen and epinephrine and have found that glucose treatment to hypoxic rats and hypoxic rats treated with oxygen shows a reversal of brain damage. during this study the findings may have clinical significance in the proper management of heart and brain functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia in neonates can lead to biochemical and molecular alterations mediated through changes in neurotransmitters resulting in permanent damage to brain. In this study, we evaluated the changes in the receptor status of GABAA in the cerebral cortex and brainstem of hypoxic neonatal rats and hypoxic rats supplemented with glucose and oxygen using binding assays and gene expression of GABAAa1 and GABAAc5. In the cerebral cortex and brainstem of hypoxic neonatal rats, a significant decrease in GABAA receptors was observed, which accounts for the respiratory inhibition. Hypoxic rats sup- plemented with glucose alone and with glucose and oxygen showed, respectively, a reversal of the GABAA receptors, andGABAAa1 and GABAAc5 gene expression to control. Glucose acts as an immediate energy source thereby reducing the ATP-depletion-induced increase in GABA and oxygenation, which helps in encountering anoxia. Resuscitation with oxygen alone was less effective in reversing the receptor alterations. Thus, the results of this study suggest that reduction in the GABAA receptors functional regulation during hypoxia plays an important role in mediating the brain damage. Glucose alone and glucose and oxygen supplementation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis covers a systematic investigation on the synthesis of silica aerogels and microspheres with tailored porosity, at ambient conditions by varying the experimental parameters as well as using organic templates. Organically modified silica-gelatin and silica-chitosan hybrids were developed for the first time using alkylalkoxysilanes such as MTMS and VTMS. Application of novel silica-biopolymer antiwetting coatings on different substrates such as glass, leather and textile is also demonstrated in the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports a new in vitro bile analysis based on the measurement of the dielectric properties at microwave frequencies. The measurements were made using rectangular cavity perturbation technique at the S-band of microwave frequency with the different samples of bile obtained from healthy persons as well as from patients. It is observed that an appreciable change in the dielectric properties of patient’s samples with the normal healthy samples and these measurements were in good agreement with clinical analysis. These results prove an alternative in-vitro method of detecting bile abnormalities based on the measurement of the dielectric properties of bile samples using microwaves without surgical procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the differential regulation of Dopamine content in pancreas and functional regulation of Dopamine D2 receptor in brain regions such as hypothalamus, brain stem, cerebral cortex and corpus striatum play an important role during pancreatic islets cell proliferation and insulin secretion. Though may reports are there implicating the functional interaction between DA receptor and pancreatic islets cell insulin secretion, the involvement of specific DA D2 receptors and changes in second messenger system during insulin secretion and pancreatic islets cell proliferation were not given emphasis. Down regulation of DA content in brain regions and pancreatic islets were observed during pancreatic regeneration. Up regulation of DA content in plasma and adrenals down regulated sympathetic activity in pancreas which cause an increase in insulin secretion and pancreatic islets cell proliferation during pancreatic regeneration. There was a differential regulation of DA D2 receptor in brain regions. The pancreatic islets DA D2 receptors were lip regulated during pancreatic regeneration. DA D2 receptor activation at specific concentration has accounted for increased pancreatic islets cell proliferation. In vitro experiments have proved the differential regulation of DA on insulin synthesis and pancreatic islets cell proliferation. Inhibitory effect of DA on cAMP and stimulatory effect of DA on IP3 through DA D2 receptors were observed in in vitro cell culture system. These effects are correlating with the DA, cAMP and IP3 content during pancreatic regeneration and islets cell proliferation. Up regulation of intracellular Ca2+ was also observed at 10-8 M DA, a specific concentration of DA which showed maximum increase of IP3 content in pancreatic islets through DA D2 receptor activation in in vitro culture. These in vitro data was highly correlating with the changes in DA, cAMP and IP3 content in pancreas during pancreatic regeneration and insulin secretion. Thus we conclude that there is a differential functional regulation of DA and DA D2 receptors in brain and pancreas during pancreatic regeneration. In vitro studies confirmed a concentration depend functional regulation of DA through DA D2 receptors on pancreatic islets cell proliferation and insulin secretion mediated through increased cAMP, IP3 and intracellular Ca2+ level. This will have immense clinical significance in the management in diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was designed to investigate the protective effect of glucose, oxygen and epinephrine resuscitation on impairment in the functional role of GABAergic, serotonergic, muscarinic receptors, PLC, BAX, SOD, CAT and GPx expression in the brain regions of hypoxia induced neonatal rats. Also, the role of hormones - Triiodothyronine (T3) and insulin, second messengers – cAMP, cGMP and IP3 and transcription factors – HIF and CREB in the regulation of neonatal hypoxia and its resuscitation methods were studied. Behavioural studies were conducted to evaluate the motor function and cognitive deficit in one month old control and experimental rats. The efficient and timely supplementation of glucose plays a crucial role in correcting the molecular changes due to hypoxia, oxygen and epinephrine. The sequence of glucose, epinephrine and oxygen administration at the molecular level is an important aspect of the study. The additive neuronal damage effect due to oxygen and epinephrine treatment is another important observation. The corrective measures by initial supply of glucose to hypoxic neonatal rats showed from the molecular study when brought to practice will lead to healthy intellectual capacity during the later developmental stages, which has immense clinical significance in neonatal care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrate the functional alterations of the GABAA and GABAB receptors and the gene expression during the regeneration of pancreas following partial pancreatectomy. The role of these receptors in insulin secretion and pancreatic DNA synthesis using the specific agonists and antagonists also are studied in vitro. The alterations of GABAA and GABAR receptor function and gene expression in the brain stem, crebellum and hypothalamus play an important role in the sympathetic regulation of insulin secretion during pancreatic regeneration. Previous studies have given much information linking functional interaction between GABA and the peripheral nervous system. The involvement of specific receptor subtypes functional regulation during pancreatic regeneration has not given emphasis and research in this area seems to be scarce. We have observed a decreased GABA content, down regulation of GABAA receptors and an up regulation of GABAB receptors in the cerebral cortex, brain stem and hypothalamus. Real Time-PCR analysis confirmed the receptor data in the brain regions. These alterations in the GABAA and GABAB receptors of the brain are suggested to govern the regenerative response and growth regulation of the pancreas through sympathetic innervation. In addition, receptor binding studies and Real Time-PCR analysis revealed that during pancreatic regeneration GABAA receptors were down regulated and GABAB receptors were up regulated in pancreatic islets. This suggests an inhibitory role for GABAA receptors in islet cell proliferation i.e., the down regulation of this receptor facilitates proliferation. Insulin secretion study during 1 hour showed GABA has inhibited the insulin secretion in a dose dependent manner in normal and hyperglycaemic conditions. Bicuculline did not antagonize this effect. GABAA agonist, muscimol inhibited glucose stimulated insulin secretion from pancreatic islets except in the lowest concentration of 1O-9M in presence of 4mM glucose.Musclmol enhanced insulin secretion at 10-7 and 10-4M muscimol in presence of 20mM glucose- 4mM glucose represents normal and 20mM represent hyperglycaemic conditions. GABAB agonist, baclofen also inhibited glucose induced insulin secretion and enhanced at the concentration of 1O-5M at 4mM glucose and at 10-9M baclofen in presence of 20mM glucose. This shows a differential control of the GABAA and GABAB receptors over insulin release from the pancreatic islets. During 24 hours in vitro insulin secretion study it showed that low concentration of GABA has inhibited glucose stimulated insulin secretion from pancreatic islets. Muscimol, the GABAA agonist, inhibited the insulin secretion but, gave an enhanced secretion of insulin in presence of 4mM glucose at 10-7 , 10-5 and 1O-4M muscimol. But in presence of 20mM glucose muscimol significantly inhibited the insulin secretion. GABAB agonist, baclofen also inhibited glucose induced insulin secretion in presence of both 4mM and 20mM glucose. This shows the inhibitory role of GABA and its specific receptor subtypes over insulin synthesis from pancreatic bete-islets. In vitro DNA synthesis studies showed that activation of GABAA receptor by adding muscimol, a specific agonist, inhibited islet DNA synthesis. Also, the addition of baclofen, a specific agonist of GABAB receptor resulted in the stimulation of DNA synthesis.Thus the brain and pancreatic GABAA and GABAB receptor gene expression differentially regulates pancreatic insulin secretion and islet cell proliferation during pancreatic regeneration. This will have immense clinical significance in therapeutic applications in the management of Diabetes mellitus.