997 resultados para Focuses production
Resumo:
Os sistemas de manejo, com diferenças no revolvimento do solo e na composição dos resíduos vegetais, alteram as propriedades biológicas do solo, com reflexos na qualidade do solo e na produtividade das culturas. Com vistas em medir estas alterações nas propriedades biológicas do solo, a biomassa e a atividade microbiana foram avaliadas em um Podzólico Vermelho-Escuro, em Eldorado do Sul (RS), utilizando diferentes preparos (convencional, reduzido e plantio direto) e dois sistemas de sucessões de culturas (aveia preta + vica/milho + caupi e aveia/milho). As avaliações foram realizadas em quatro épocas, durante 12 meses, e em duas profundidades (0-5 e 5-15 cm). O carbono da biomassa microbiana foi analisado pelo método de fumigação-incubação, e a atividade microbiana, pela produção de C-CO2 e N mineral, após 60 dias de incubação. As diferenças na biomassa e na atividade microbiana, entre os sistemas de manejo, foram mais pronunciadas na camada de 0-5 cm. Nesta camada de solo, observaram-se os maiores valores de biomassa e de atividade nos preparos conservacionistas e no sistema aveia + vica/milho + caupi. Dentre as variáveis estudadas, a mineralização de N mostrou-se a mais sensível aos manejos, à profundidade e à época de amostragem.
Resumo:
Natural rubber is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic alternatives. The rubber tree Hevea brasiliensis is the almost exclusive commercial source of natural rubber currently and alternative crops should be developed for several reasons, including: a disease risk to the rubber tree that could potentially decimate current production, a predicted shortage of natural rubber supply, increasing allergic reactions to rubber obtained from the Brazilian rubber tree and a general shift towards renewables. This review summarizes our knowledge of plants that can serve as alternative sources of natural rubber, of rubber biosynthesis and the scientific gaps that must be filled to bring the alternative crops into production.
Resumo:
PURPOSE: To evaluate the effect of intraocular administration of nitric oxide (NO) donors in the rabbit eye on intraocular pressure (IOP), inflammation, and toxicity. METHODS: Intravitreal and intracameral injections of two NO donors, SIN-1 and SNAP, and SIN-1C and BSS were performed. Clinical examination, IOP measurements, protein evaluation in aqueous humor, and histologic analysis of the ocular globes were realized. Nitric oxide release was demonstrated by nitrite production in the aqueous humor and in the vitreous using the Griess reaction. RESULTS: The drastic decrease of IOP, observed after a single NO donor injection, was correlated directly with nitrite production and, thus, to NO release. Injection of inactive metabolite of SIN-1, SIN-1C, which is not able to release NO, did not modulate IOP. When administered in the aqueous humor or in the vitreous, NO did not diffuse from one segment of the eye to another. No inflammation or histologic damage was observed as a result of a single NO donor administration. CONCLUSIONS: Nitric oxide is implicated directly in the regulation of IOP and its acute, and massive release into the rabbit eye did not induce inflammation or other growth toxic effects on the ocular tissues.
Resumo:
This study compares the chemical composition of the solution and exchange complex of soil in a 3-year-old irrigated vineyard (Vitis vinifera L., Red Globe cultivar) with that of adjacent clearing in the native hyperxerophyllic 'caatinga' vegetation. The soils are classified as Plinthic Eutrophic Red-Yellow Argisol; according to Soil Taxonomy they are isohyperthermic Plinthustalfs. Detailed physiographic characterization revealed an impermeable gravel and cobble covering the crystalline rocks; the relief of this layer was more undulating than the level surface. Significant higher concentrations of extractable Na, K, Mg and Ca were observed within the vineyard. Lower soil acidity, higher Ca/Mg ratios, as well as lower sodium adsorption and Na/K ratios reflected additions of dolomitic lime, superphosphate and K-bearing fertilizers. As the water of the São Francisco River is of good quality for irrigation (C1S1), the increases in Na were primarily attributed to capillary rise from the saline groundwater table. None of the soil in the study area was found to be sodic. About 62% of the vineyard had an Ap horizon with salinity levels above 1.5dSm-1 (considered detrimental for grape production); according to average values for this horizon, a potential 13% reduction in grape production was predicted. Differences in chemical composition in function of distance to the collector canals were observed in the clearing, but not in the vineyard. The influence of differences in the elevations of the surface and impermeable layers, as well as pediment thickness, was generally weaker under irrigation. Under irrigation, soil moisture was greater in points of convergent surface waterflow; the effect of surface curvature on chemical properties, though less consistent, was also stronger in the vineyard.
Resumo:
We present a non-equilibrium theory in a system with heat and radiative fluxes. The obtained expression for the entropy production is applied to a simple one-dimensional climate model based on the first law of thermodynamics. In the model, the dissipative fluxes are assumed to be independent variables, following the criteria of the Extended Irreversible Thermodynamics (BIT) that enlarges, in reference to the classical expression, the applicability of a macroscopic thermodynamic theory for systems far from equilibrium. We analyze the second differential of the classical and the generalized entropy as a criteria of stability of the steady states. Finally, the extreme state is obtained using variational techniques and observing that the system is close to the maximum dissipation rate