997 resultados para Flexible Conductor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material with potential to replace lead zirconate titanate (PZT),1 however high leakage conductivity for the material has been widely reported.2 Through a combination of Impedance Spectroscopy (IS), O2- ion transference (EMF) number experiments and O18 tracer diffusion measurements, combined with Time-of-flight Secondary Ion Mass Spectrometry (TOFSIMS), it was identified that this leakage conductivity was due to oxygen ion conductivity. The volatilization of bismuth during synthesis, causing oxygen vacancies, is believed to be responsible for the leakage conductivity.3 The oxide-ion conductivity, when doped with magnesium, exceeds that of yttria-stabilized zirconia (YSZ) at ~500 °C,3 making it a potential electrolyte material for Intermediate Temperature Solid Oxide Cells (ITSOCs). Figure 1 shows the comparison of bulk oxide ion conductivity between 2 at.% Mg-doped NBT and other known oxide ion conductors.

As part of the UK wide £5.7m 4CU project, research has concentrated on trying to develop NBT for use in Intermediate Temperature Solid Oxide Cells (ITSOCS). With the aim of achieving mixed ionic and electronic conduction, transition metals were chemically doped on to the Ti-site. A range of experimental techniques was used to characterize the materials aimed at investigating both conductivity and material structure (Scanning Electron Microscopy (SEM), IS, X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS)). The potential for NBT as an ITSOC material, as well as the challenges of developing the material, will be discussed.

(1) Takenaka T. et al. Jpn. J. Appl. Phys 1999, 30, 2236.

(2) Hiruma Y. et al. J. Appl. Phys 2009, 105, 084112.

(3) Li. M. et al. Nature Materials 2013, 13, 31.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method to fabricate chemically linked conducting polymer–biopolymer composites that are intrinsically flexible and conducting for functional electrode applications is presented. Polypyrrole was synthesised in situ during the cellulose regeneration process using the 1-butyl-3-methylimidazolium chloride ionic liquid as a solvent medium. The obtained polypyrrole–cellulose composite was chemically blended and showed flexible polymer properties while retaining the electronic properties of a conducting polymer. Addition of an ionic liquid such as trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, enhanced the flexibility of the composite. The functional application of these materials in the electrochemically controlled release of a model drug has been demonstrated. This strategy opens up a new design for a wide spectrum of materials for smart electronic device applications wherein the functionality of doping and de-doping of conducting polymers is retained and their processability issue is addressed by exploiting an ionic liquid route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Automatisierung logistischer Prozesse stellt aufgrund dynamischer Prozesseigenschaften und wirtschaftlicher Anforderungen eine große technische Herausforderung dar. Es besteht der Bedarf nach neuartigen hochflexiblen Automatisierungs- und Roboterlösungen, die in der Lage sind, variable Güter zu handhaben oder verschiedene Prozesse bzw. Funktionalitäten auszuführen. Im Rahmen dieses Beitrages wird die Steigerung der Flexibilität anhand von zwei konkreten Beispielen aus den Bereichen Stückguthandhabung und Materialflusstechnik adressiert.