992 resultados para Fermi-Coulomb, Correlacions de
Resumo:
In the quantum Hall regime, the longitudinal resistivity rho (xx) plotted as a density-magnetic-field (n (2D) -B) diagram displays ringlike structures due to the crossings of two sets of spin split Landau levels from different subbands [see, e.g., Zhang et al., in Phys. Rev. Lett. 95:216801, 2005. For tilted magnetic fields, some of these ringlike structures ""shrink"" as the tilt angle is increased and fully collapse at theta (c) a parts per thousand 6A degrees. Here we theoretically investigate the topology of these structures via a non-interacting model for the 2DEG. We account for the inter Landau-level coupling induced by the tilted magnetic field via perturbation theory. This coupling results in anticrossings of Landau levels with parallel spins. With the new energy spectrum, we calculate the corresponding n (2D) -B diagram of the density of states (DOS) near the Fermi level. We argue that the DOS displays the same topology as rho (xx) in the n (2D) -B diagram. For the ring with filling factor nu=4, we find that the anticrossings make it shrink for increasing tilt angles and collapse at a large enough angle. Using effective parameters to fit the theta=0A degrees data, we find a collapsing angle theta (c) a parts per thousand 3.6A degrees. Despite this factor-of-two discrepancy with the experimental data, our model captures the essential mechanism underlying the ring collapse.
Resumo:
Universal properties of the Coulomb interaction energy apply to all many-electron systems. Bounds on the exchange-correlation energy, in particular, are important for the construction of improved density functionals. Here we investigate one such universal property-the Lieb-Oxford lower bound-for ionic and molecular systems. In recent work [J Chem Phys 127, 054106 (2007)], we observed that for atoms and electron liquids this bound may be substantially tightened. Calculations for a few ions and molecules suggested the same tendency, but were not conclusive due to the small number of systems considered. Here we extend that analysis to many different families of ions and molecules, and find that for these, too, the bound can be empirically tightened by a similar margin as for atoms and electron liquids. Tightening the Lieb-Oxford bound will have consequences for the performance of various approximate exchange-correlation functionals. (C) 2008 Wiley Periodicals Inc.