992 resultados para FLUORESCENCE PROBE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of promoter probe vectors for use in Gram-negative bacteria has been made in two broad-host-range vectors, pOT (pBBR replicon) and pJP2 (incP replicon). Reporter fusions can be made to gfpUV, gfprnut3.1, unstable gfpmut3.1 variants (LAA, LVA, AAV and ASV), gfp+, dsRed2, dsRedT3, dsRedT4, mRFP1, gusA or lacZ. The two vector families, pOT and pJP2, are compatible with one another and share the same polylinker for facile interchange of promoter regions. Vectors based on pJP2 have the advantage of being ultra-stable in the environment due to the presence of the parABCDE genes. As a confirmation of their usefulness, the dicarboxylic acid transport system promoter (dctA(p)) was cloned into a pOT (pRU1097)- and a pJP2 (pRU1156)-based vector and shown to be expressed by Rhizobium leguminosarum in infection threads of vetch. This indicates the presence of dicarboxylates at the earliest stages of nodule formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of temperature on early vegetative growth, leaf chlorophyll fluorescence and chlorophyll content was examined on four genotypes of cacao (Amelonado, AMAZ 15–15, SCA 6 and SPEC 54/1). A controlled environment glasshouse was used to simulate the temperature conditions of three cacao-growing regions (Bahia, Brazil; Tafo, Ghana and Lower Perak, Malaysia) over the course of a year. Base temperatures calculated from increments in main stem growth varied from 18.6°C for AMAZ 15/15 to 20.8°C for SPEC 54/1. Temporal variation in Fv/Fm observed for two of the clones (SCA 6 and SPEC 54/1) in two of the compartments were correlated with temperature differences over time. Significant differences were also recorded between genotypes in leaf chlorophyll content. It was shown that variation over time in leaf chlorophyll content could be quantified accurately as a function of temperature and light integral. The results imply that genetic variability exists in cacao in response to temperature stress.