995 resultados para FINITE CONNECTIVITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Connectivity mapping is the process of establishing connections between different biological states using gene-expression profiles or signatures. There are a number of applications but in toxicology the most pertinent is for understanding mechanisms of toxicity. In its essence the process involves comparing a query gene signature generated as a result of exposure of a biological system to a chemical to those in a database that have been previously derived. In the ideal situation the query gene-expression signature is characteristic of the event and will be matched to similar events in the database. Key criteria are therefore the means of choosing the signature to be matched and the means by which the match is made. In this article we explore these concepts with examples applicable to toxicology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently introduced power-combining scheme for a Class-E amplifier is, for the first time, experimentally validated in this paper. A small value choke of 2.2 nH was used to substitute for the massive dc-feed inductance required in the classic Class-E circuit. The power-combining amplifier presented, which operates from a 3.2-V dc supply voltage, is shown to be able to deliver a 24-dBm output power and a 9.5-dB gain, with 64% drain efficiency and 57% power-added efficiency at 2.4 GHz. The power amplifier exhibits a 350-MHz bandwidth within which a drain efficiency that is better than 60% and an output power that is higher than 22 dBm were measured. In addition, by adopting three-harmonic termination strategy, excellent second-and third-harmonic suppression levels of 50 and 46 dBc, respectively, were obtained. The complete design cycle from analysis through fabrication to characterization is explained. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Newton–Raphson solution scheme with a stress point algorithm is presented for the implementation of an elastic–viscoplastic soilmodel in a finite element program. Viscoplastic strain rates are calculated using the stress and volumetric states of the soil. Sub-incrementsof time are defined for each iterative calculation of elastic–viscoplastic stress changes so that their sum adds up to the time incrementfor the load step. This carefully defined ‘iterative time’ ensures that the correct amount of viscoplastic straining is accumulated overthe applied load step. The algorithms and assumptions required to implement the solution scheme are provided. Verification of the solutionscheme is achieved by using it to analyze typical boundary value problems.