994 resultados para Electronic transition intensities
Resumo:
This study investigates the potential stages of drug use. Data from the longitudinal Cohort Study on Substance Use Risk Factors were used (N = 5,116). Drug use (alcohol, tobacco, and 16 illicit drugs) over the previous 12 months was assessed at two time points. Patterns and trajectories of drug use were studied using latent transition analysis (LTA). This study's substantive contributions are twofold. First, the pattern of drug use displayed the well-known sequence of drug involvement (licit drugs to cannabis to other illicit drugs), but with an added distinction between two kinds of illicit drugs ("middle-stage" drugs: uppers, hallucinogens, inhaled drugs; and "final-stage" drugs: heroin, ketamine, GHB/GBL, research chemicals, crystal meth, and spice). Second, subgroup membership was stable over time, as the most likely transition was remaining in the same latent class.
Resumo:
Traditionally, Live High-Train High (LHTH) interventions were adopted when athletes trained and lived at altitude to try maximising the benefits offered by hypoxic exposure and improving sea level performance. Nevertheless, scientific research has proposed that the possible benefits of hypoxia would be offset by the inability to maintain high training intensity at altitude. However, elite athletes have been rarely recruited as an experimental sample, and training intensity has almost never been monitored during altitude research. This case study is an attempt to provide a practical example of successful LHTH interventions in two Olympic gold medal athletes. Training diaries were collected and total training volumes, volumes at different intensities, and sea level performance recorded before, during and after a 3-week LHTH camp. Both athletes successfully completed the LHTH camp (2090 m) maintaining similar absolute training intensity and training volume at high-intensity (> 91% of race pace) compared to sea level. After the LHTH intervention both athletes obtained enhancements in performance and they won an Olympic gold medal. In our opinion, LHTH interventions can be used as a simple, yet effective, method to maintain absolute, and improve relative training intensity in elite endurance athletes. Key PointsElite endurance athletes, with extensive altitude training experience, can maintain similar absolute intensity during LHTH compared to sea level.LHTH may be considered as an effective method to increase relative training intensity while maintaining the same running/walking pace, with possible beneficial effects on sea level performance.Training intensity could be the key factor for successful high-level LHTH camp.
Resumo:
OBJECTIVE: To determine the percent decussation of pupil input fibers in humans and to explain the size and range of the log unit relative afferent pupillary defect (RAPD) in patients with optic tract lesions. DESIGN: Experimental study. PARTICIPANTS AND CONTROLS: Five patients with a unilateral optic tract lesion. METHODS: The pupil response from light stimulation of the nasal hemifield, temporal hemifield, and full field of each eye of 5 patients with a unilateral optic tract lesion was recorded using computerized binocular infrared pupillography. Six stimulus light intensities, separated by 0.5-log unit steps, were used; 12 stimulus repetitions were given for each stimulus condition. MAIN OUTCOME MEASURES: For each stimulus condition, the pupil response of each eye was characterized by plotting the mean pupil contraction amplitude as a function of stimulus light intensity. The percentage of decussating afferent pupillomotor input fibers was calculated from the ratio of the maximal pupil contractions elicited from each eye. The RAPD was determined pupillographically from full-field stimulation to each eye. RESULTS: In all patients, the pupil response from the functioning temporal hemifield ipsilateral to the tract lesion was greater than that from the functioning contralateral nasal hemifield. This temporal-nasal asymmetry increased with increasing stimulus intensity and was similar in hemifield and full-field stimuli, eventually saturating at maximal light intensity. The log unit RAPD did not correlate with the estimated percentage of decussating pupil fibers, which ranged from 54% to 67%. CONCLUSIONS: In patients with a unilateral optic tract lesion, the pupillary responses from full-field stimulation to each eye are the same as comparing the functioning temporal field with the functioning nasal field. The percentage of decussating fibers is reflected in the ratio of the maximal pupil contraction amplitudes resulting from stimulus input between the two eyes. The RAPD that occurs in this setting reflects the difference in light sensitivity between the intact temporal and nasal hemifields. Its magnitude does not correlate with the difference in the number of crossed and uncrossed axons, but its sidedness contralateral to the side of the optic tract lesion is consistent with the greater percentage of decussating pupillomotor input.