996 resultados para Electromagnetically Induced Transparency
Resumo:
Strong laser-field-induced autoionisation in the presence of both photoionising and radiative decay of the autoionising state (AS) is investigated, focusing on the laser intensity dependence of the photoemission and photoelectron spectra. In contrast to previous predictions, power broadening and increasing reduction of the doublet peak heights with field strength are found in the photoemission spectrum. Similar effects leading to considerable suppression and even complete disappearance of the lowest-order peaks in the photoelectron spectrum, together with peak switching, are also demonstrated, which are closely related to above-threshold ionisation. In addition, it is suggested that the total number of energetic photoelectrons may serve as an alternative to measuring the atomic parameters of the AS. All these effects are attributed to the presence of the strong `probe': laser-induced decay of the AS.
Resumo:
Resonant interaction of an autoionising state with a strong laser field is considered and effects of second-order ionisation processes are investigated. The authors show that these processes play a very important role in laser-induced autoionisation (LIA). They drastically affect the lowest-order peaks in the photoelectron spectrum. In addition to these peaks, high-order peaks due to ejection of energetic photoelectrons appear. For the laser intensities of current interest, second-order peaks are much stronger than the original ones, an important result that, they believe, can be observed experimentally. Moreover, `peak switching', a general feature of above-threshold ionisation, is also manifest in the electron spectrum of LIA.
Resumo:
Progressive increases in storm intensities and extreme wave heights have been documented along the U.S. West Coast. Paired with global sea level rise and the potential for an increase in El Niño occurrences, these trends have substantial implications for the vulnerability of coastal communities to natural coastal hazards. Community vulnerability to hazards is characterized by the exposure, sensitivity, and adaptive capacity of human-environmental systems that influence potential impacts. To demonstrate how societal vulnerability to coastal hazards varies with both physical and social factors, we compared community exposure and sensitivity to storm-induced coastal change scenarios in Tillamook (Oregon) and Pacific (Washington) Counties. While both are backed by low-lying coastal dunes, communities in these two counties have experienced different shoreline change histories and have chosen to use the adjacent land in different ways. Therefore, community vulnerability varies significantly between the two counties. Identifying the reasons for this variability can help land-use managers make decisions to increase community resilience and reduce vulnerability in spite of a changing climate. (PDF contains 4 pages)