994 resultados para Electric field measurement


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the problems in experimentally obtaining hydrodynamic loads on an oscillating wave surge converter during slamming events, with the aim of furthering understanding of full scale hydrodynamic loads that flap type devices must be designed to withstand. Including how hydro-elastic effects and structural response are linked and why they are essential to the measurement of impulsive hydrodynamic loads. A combined experimental and numerical structural response study carried out on a 40th scale Oyster model drew conclusions on the structural vibration observed in the strain gauge load cell measurement. A further structural response study on a piezo electric load measurement device gave an insight into the advantages it could bring to reducing hydro-elastic effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supersolitons are a form of soliton characterised, inter alia, by additional local extrema superimposed on the usual bipolar electric field signature. Previous studies of supersolitons supported by three-component plasmas have dealt with ion-acoustic structures. An analogous problem is now considered, namely, dust-acoustic supersolitons in a plasma composed of fluid negative dust grains and two kappa-distributed positive ion species. Calculations illustrating some supersoliton characteristics are presented. © Cambridge University Press 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For over a decade, controlling domain wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like race-track memory and domain wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed “domain wall electronics”. Here we report the creation of a ferroelectric domain wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode’s saw-tooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the saw-tooth edge.