1000 resultados para ENZYMATIC DYNAMICS
Resumo:
Arrowtooth flounder (Atheresthes stomias) has the highest biomass of any groundfish species in the Gulf of Alaska, is a voracious predator of age 1 walleye pollock (Theragra chalcogramma), and is a major component in the diet of Steller sea lions (Eumetopias jubatus). Owing to its ecological importance in the Gulf of Alaska and the limited information available on its reproduction, interest has intensified in describing its spawning and early life history. A study was undertaken in late January–February 2001–2003 in the Gulf of Alaska to obtain information on adult spawning location, depth distribution, and sexual maturity, and to obtain fertilized eggs for laboratory studies. Adults were found 200–600 m deep east of Kodiak Island over the outer continental shelf and upper slope, and southwest along the shelf break to the Shumagin Islands. Most ripe females (oocytes extruded with light pressure) were found at 400 m and most ripe males (milt extruded with light pressure) were found at depths ≥450 m. Eggs were fertilized and incubated in the laboratory at 3.0°, 4.5°, and 6.0°C. Eggs were reared to hatching, but larvae did not survive long enough to complete yolk absorption and develop pigment. Eggs were staged according to morphological hallmarks and incubation data were used to produce a stage duration table and a regression model to estimate egg age based on water temperature and developmental stage. Arrowtooth flounder eggs (1.58–1.98 mm in diameter) were collected in ichthyoplankton surveys along the continental shelf edge, primarily at depths ≥400 m. Early-stage eggs were found in tows that sampled to depths of ≥450 m. Larvae, which hatch between 3.9 and 4.8 mm standard length, increased in abundance with depth. Observations on arrowtooth flounder eggs and early-stage larvae were used to complete the description of the published partial developmental series.(PDF file contains 34 pages.)
Resumo:
This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphases being stressed on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS
[1] Molecular structure and energy states | (21) | ||
[2] Some basic concepts of kinetic theory | (51) | ||
[3] Interaction of molecules with solid surface | (131) | ||
[4] Free molecular flow | (159) | ||
[5] Continuum models | (191) | ||
[6] Transitional regime | (231) | ||
[7] Direct simulation Monte-Carlo (DSMC) method | (275) | ||
[8] Microscale slow gas flows, information preservation method | (317) | ||
[App. I] Gas properties | (367) | ||
[App. II] Some integrals | (369) | ||
[App. III] Sampling from a prescribed distribution | (375) | ||
[App. IV] Program of the couette flow | (383) | ||
Subject Index | (399) |
Resumo:
Menlicirrhus americanus in the northwestern Gulf of Mexico mature at 150-220 mm TL and 12-14 months of age, with males maturing when 10-40 mm smaller than females. Spawning occurs within a broad period from February through November with two discrete peaks which coincide with the periodicity of downcoast alongshore currents (towards Mexico) in spring and fall. This species occurs at depths of less than 5 to 27 m, being most abundant at 5 m or shallower. Young-of-the-year recruit primarily at 5-9 m or shallower and gradually expand their bathymetric range. Age determination by length frequency is feasible in M. americanus but not as simple as in species that spawn in one major period of the year. Only one or two spawned groups normally predominated at anyone time and no more than three co-occurred with few possible exceptions. Observed mean sizes were 138 mm TL at 6 months, and 192 and 272 mm at ages I and II, respectively. Typical maximum size was 296-308 mm and typical maximum age is probably 2-3 years. The largest fISh captured were 392 and 455 mm. Observed sex ratio was 1.2 females to 1 male. Weight, girth, and length-length regressions are presented.(PDF file contains 27 pages.)
Resumo:
The emergence of cooperation is analyzed in heterogeneous populations where individuals can be classified in two groups according to their phenotypic appearance. Phenotype recognition is assumed for all individuals: individuals are able to identify the type of every other individual, but fail to recognize their own type, and thus behave under partial information conditions. The interactions between individuals are described by 2 × 2 symmetric games where individuals can either cooperate or defect. The evolution of such populations is studied in the framework of evolutionary game by means of the replicator dynamics. Overlapping generations are considered, so the replicator equations are formulated in discrete-time form. The well-posedness conditions of the system are derived. Depending on the parameters of the game, a restriction may exist for the generation length. The stability analysis of the dynamical system is carried out and a detailed description of the behavior of trajectories starting from the interior of the state-space is given. We find that, provided the conditions of well-posedness are verified, the linear stability of monomorphic states in the discrete-time replicator coincides with the one of the continuous case. Specific from the discrete-time case, a relaxed restriction for the generation length is derived, for which larger time-steps can be used without compromising the well-posedness of the replicator system.
Resumo:
We identify an intriguing feature of the electron-vibrational dynamics of molecular systems via a computational examination of trans-polyacetylene oligomers. Here, via the vibronic interactions, the decay of an electron in the conduction band resonantly excites an electron in the valence band, and vice versa, leading to oscillatory exchange of electronic population between two distinct electronic states that lives for up to tens of picoseconds. The oscillatory structure is reminiscent of beating patterns between quantum states and is strongly suggestive of the presence of long-lived molecular electronic coherence. Significantly, however, a detailed analysis of the electronic coherence properties shows that the oscillatory structure arises from a purely incoherent process. These results were obtained by propagating the coupled dynamics of electronic and vibrational degrees of freedom in a mixed quantum-classical study of the Su-Schrieffer-Heeger Hamiltonian for polyacetylene. The incoherent process is shown to occur between degenerate electronic states with distinct electronic configurations that are indirectly coupled via a third auxiliary state by vibronic interactions. A discussion of how to construct electronic superposition states in molecules that are truly robust to decoherence is also presented