997 resultados para Dielectric strength
Resumo:
A new method of dielectric-constant measurement is developed. The dielectric constant epsilon(r) RF/microwave substrate is extracted by combining the microstrip ring resonator measurement with Ansoft HFSS electromagnetic simulation software. The developed method has two advantages: (i) characterization of dielectric constant versus multiple frequency points, and (ii) compatibility with electronics design automation (EDA) software tools. This characterization method can reduce the design cycle of microwave circuits and devices. (C) 2004 Wiley Periodicals, Inc.
Dielectric function of YBCO determined by attenuated total reflection in the mid-infrared (3,392 nm)
Resumo:
Results are reported on the a-b plane dielectric function (epsilon) of thin-film c-axis NdBa2Cu3O7-delta with close to optimal oxygen doping (T-c similar to 90 K) in the mid-infrared (wavelength 3.392 mum) over the temperature range 85 K to 300 K. An attenuated total reflectance technique based on the excitation of surface plasmon polaritons is used. The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant with temperature to within experimental uncertainties. Representative values are epsilon = [epsilon (r) + i epsilon (i)] = (-12.9 +/- 0.6) + i(23.0 +/- 1.5) at T similar to 295 K and epsilon = (-15.7 +/- 0.7) + i(23.5 +/- 1.1) at T similar to 90 K. The raw data an interpreted in terms of the generalized Drude model which gives effective scattering rates (1/tau*) that increase with temperature from about 3800 cm(-1) at 90 K to about 4300 cm(-1) at 295 K. There are indications of a superlinear T-dependence in the scattering, 1/tau*: a fit to a function of the form 1/tau* = A + BTalpha gives alpha = 2.8 +/- 0.7. The effective plasma frequency, omega (p)*, with an average value of approximately 21 000 cm(-1) was independent of temperature.