1000 resultados para Diapiric structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new hydrazinium complexes of manganese, (N2H5)3MnX5 (X = Cl and Br), have been prepared and characterized by analysis, infrared and visible spectra. The single crystal X-ray structure of the chloride complex has been determined. Only one of the three N2H+5 cations is coordinated to the metal. In the anion, [Mn(N2H5)Cl5]2-, the coordination polyhedron around the manganese atom is a slightly distorted octahedron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary morganization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyamines spermine, spermidine, putrescine, cadaverine, etc. have been implicated in a variety of cellular functions. However, details of their mode of interaction with other ubiquitous biomolecules is not known. We have solved a few structures of polyamine-amino acid complexes to understand the nature and mode of their interactions. Here we report the structure of a complex of putrescine with DL-glutamic acid. Comparison of the structure with the structure of putrescine-L-glutamic acid complex reveals the high degree of similarity in the mode of interaction in the two complexes. Despite the presence of a centre of symmetry in the present case, the arrangement of molecules is strikingly similar to the L-glutamic acid complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal and molecular structure of the title compound has been determined by direct methods from diffractometer data. Crystals are orthorhombic, with Z= 4 in a unit cell of dimensions : a= 13.811 (10), b= 5.095(5), c= 12.914(10)Å, space group P212121. The structure was refined by least-squares to R 3.31% for 868 observed reflections. There is significant non-planarity of the peptide group and its nitrogen atom is significantly pyramidal. There is no correlation between the double-bond character and reactivity of the C–N bond of the terminal amide group in glutamine and acetamide

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of formamide with Ni(NO3)(2)center dot 6H(2)O under hydrothermal condition in a mixture of MeOH/H2O forms a two-dimensional formate bridged sheet Ni(HCOO)(2)(MeOH)(2) (1). X-ray structure analysis reveals the conversion of formamide to formate which acts as a bridging ligand in complex 1 where the axial sites of Ni(II) are occupied by methanol used as a solvent. An analogous reaction in presence of 4,4'-bipyridyl (4,4'-bipy) yielded a three-dimensional structure Ni(HCOO)(2)(4,4'-bpy) (2). DC magnetic measurements as a function of temperature and field established the presence of spontaneous magnetization with T-c (Curie temperature) = 17 and 20.8 K in 1 and 2, respectively, which can be attributed due to spin-canting. DFT calculations were performed to corroborate the magnetic results of 1 and 2. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The torsional potential functions Vt(φ) and Vt(ψ) around single bonds N–Cα and Cα-C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (φ, ψ)-plane with the value of Vtot(φ, ψ), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in l-configuration, are Vt(φ) = – 1.0 cos (φ + 60°); Vt(ψ) = – 0.5 cos (ψ + 60°) – 1.0 cos (2ψ + 30°) – 0.5 cos (3ψ + 30°). The dipeptide energy maps Vtot(φ, ψ) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line ψ = 0°. These functions, derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sr2TiMnO6, a double perovskite associated with high degree of B-site cation disorder was investigated in detail for its structural, magnetic, and dielectric properties. Though x-ray powder diffraction analysis confirms its cubic structure, first order Raman scattering and infrared reflectivity spectra indicate a breaking of the local cubic symmetry. The magnetization study reveals an anomaly at 14 K owing to a ferrimagnetic/canted antiferromagneticlike ordering arising from local Mn-O-Mn clusters. Saturated M-H hysteresis loops obtained at 5 K also reflect the weak ferromagnetic exchange interactions present in the system and an approximate estimation of Mn3+/Mn4+ was done using the magnetization data for the samples sintered at different temperatures. The conductivity and dielectric behavior of this system has been investigated in a broad temperature range of 10 to 300 K. Intrinsic permittivity was obtained only below 100 K whereas giant permittivity due to conductivity and Maxwell-Wagner polarization was observed at higher temperatures. X-ray photoemission studies further confirmed the presence of mixed oxidation states of Mn and the valence band spectra analysis was carried out in detail. (C) 2010 American Institute of Physics. doi: 10.1063/1.3500369]