995 resultados para Diagnostics des plasmas
Resumo:
The reductive perturbation technique is employed to investigate the modulational instability of dust-acoustic (DA) waves propagating in a four-component dusty plasma. The dusty plasma consists of both positive- and negative-charge dust grains, characterized by a different mass, temperature and density, in addition to a background of Maxwellian electrons and ions. Relying on a multi-fluid plasma model and employing a multiple scales technique, a nonlinear Schrodinger type equation (NLSE) is obtained for the electric potential amplitude perturbation. The occurrence of localized electrostatic wavepackets is shown, in the form of oscillating structures whose modulated envelope is modelled as a soliton (or multi-soliton) solution of the NLSE. The DA wave characteristics, as well as the associated stability thresholds, are studied analytically and numerically. The relevance of these theoretical results with dusty plasmas observed in cosmic and laboratory environments is analysed in detail, by considering realistic multi-component plasma configurations observed in the polar mesosphere, as well as in laboratory experiments.
Resumo:
The random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employes. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdifusively for every large values of the position variable z, since the FL-MSD sigma varies as sigma similar to z(4/3). An intermediate diffusive regime may also possible exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusie asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous resuslts is discussed.
Resumo:
An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schrodinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed. (c) 2008 American Institute of Physics.