999 resultados para Detroit (Mich.)--Buildings
Resumo:
Buildings consume a large amount of energy, in both their use and production. Retrofitting aims to achieve a reduction in this energy consumption. However, there are concerns that retrofitting can cause negative impacts on the internal environment including poor thermal comfort and health issues. This research investigates the impact of retrofitting the façade of existing traditional buildings and the resulting impact on the indoor environment and occupant thermal comfort. A Case building located at the University of Reading has been monitored experimentally and modelled using IES software with monitored values as input conditions for the model. The proposed façade related retrofit options have been simulated and provide information on their effect on the indoor environment. The findings show a positive impact on the internal environment. The data shows a 16.2% improvement in thermal comfort after retrofit is simulated. This also achieved a 21.6% reduction in energy consumption from the existing building.
Resumo:
Cool materials are characterized by having a high solar reflectance r – which is able to reduce heat gains during daytime - and a high thermal emissivity ε that enables them to dissipate the heat absorbed throughout the day during night. Despite the concept of cool roofs - i.e. the application of cool materials to roof surfaces - is well known in US since 1990s, many studies focused on their performance in both residential and commercial sectors under various climatic conditions for US countries, while only a few case studies are analyzed in EU countries. The present work aims at analyzing the thermal benefits due to their application to existing office buildings located in EU countries. Indeed, due to their weight in the existing buildings stock, as well as the very low rate of new buildings construction, the retrofit of office buildings is a topic of great concern worldwide. After an in-depth characterization of the existing buildings stock in the EU, the book gives an insight into roof energy balance due to different technological solutions, showing in which cases and to what extent cool roofs are preferable. A detailed description of the physical properties of cool materials and their availability on the market provides a solid background for the parametric analysis carried out by means of detailed numerical models that aims at evaluating cool roofs performance for various climates and office buildings configurations. With the help of dynamic simulations, the thermal behavior of representative office buildings of the existing EU buildings stock is assessed in terms of thermal comfort and energy needs for air conditioning. The results, which consider several variations of building features that may affect the resulting energy balance, show how cool roofs are an effective strategy for reducing overheating occurrences and thus improving thermal comfort in any climate. On the other hand, potential heating penalties due to a reduction in the incoming heat fluxes through the roof are taken into account, as well as the aging process of cool materials. Finally, an economic analysis of the best performing models shows the boundaries for their economic convenience.
Resumo:
Different shapes of asymmetric awnings for east and west windows are investigated mathematically as well as by measurement in a model. A box with 90 cm side and a 30x30 cm window was placed outdoor in overcast weather and the daylight factor was measured at the bottom of the box when the window was unshaded or equipped with different awnings. The average daylight factor in the box decreased from 4.6% for the unshaded window to 1.0% when a full awning was used. With “the best” asymmetrical awning, the average daylight factor was 80% larger than with the full awing. Using Dutch climate, calculation of the energy from direct radiation transmitted through the window during the cooling season showed that this was decreased from 100% as an annual mean for the unshaded window down 22% with a full awing. With “the best” asymmetrical awning, 26% of the energy was transmitted. Calculation of the indoor temperature in a hypothetical row house in Netherlands show that the use of either normal or asymmetrical awnings considerable decrease the indoor temperature during the hot season. Therefore the use of asymmetrical awnings for east or west faced windows considerable can increase the daylight in buildings, with almost no change in overheating, compared to if traditional awnings are used.
Resumo:
The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity.A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.
Resumo:
Research on solar combisystems for the Nordic and Baltic countries have been carriedout. The aim was to develop competitive solar combisystems which are attractive tobuyers and to educate experts in the solar heating field.The participants of the projects were the universities: Technical University of Denmark,Dalarna University, University of Oslo, Riga Technical University and Lund Institute ofTechnology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S(Denmark), Solentek AB (Sweden), SolarNor (Norway) and SIA Grandeg (Latvia).The project included education, research, development and demonstration. Theactivities started in 2003 and were finished by the end of 2006. A number of Ph.D.studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway were carriedout. Close cooperation between the researchers and the industry partners ensured thatthe results of the projects can be utilized. The industry partners will soon be able tobring the developed systems into the market.In Denmark and Norway the research and development focused on solarheating/natural gas systems, and in Sweden and Latvia the focus was on solarheating/pellet systems. Additionally, Lund Institute of Technology and University ofOslo studied solar collectors of various types being integrated into the building.
Resumo:
In this project, Stora Enso’s newly developed building system has been further developed to allow building to the Swedish passive house standard for the Swedish climate. The building system is based on a building framework of CLT (Cross laminated timber) boards. The concept has been tested on a small test building. The experience gained from this test building has also been used for planning a larger building (two storeys with the option of a third storey) with passive house standard with this building system. The main conclusions from the project are: It is possible to build airtight buildings with this technique without using traditional vapour barriers. Initial measurements show that this can be done without reaching critical humidity levels in the walls and roof, at least where wood fibre insulation is used, as this has a greater capacity for storing and evening out the moisture than mineral wool. However, the test building has so far not been exposed to internal generation of moisture (added moisture from showers, food preparation etc.). This needs to be investigated and this will be done during the winter 2013-14. A new fixing method for doors and windows has been tested without traditional fibre filling between them and the CLT panel. The door or window is pressed directly on to the CLT panel instead, with an expandable sealing strip between them. This has been proved to be successful. The air tightness between the CLT panels is achieved with expandable sealing strips between the panels. The position of the sealing strips is important, both for the air tightness itself and to allow rational assembly. Recurrent air tightness measurements show that the air tightness decreased somewhat during the first six months, but not to such an extent that the passive house criteria were not fulfilled. The reason for the decreased air tightness is not clear, but can be due to small movements in the CLT construction and also to the sealing strips being affected by changing outdoor temperatures. Long term measurements (at least two years) have to be carried out before more reliable conclusions can be drawn regarding the long term effect of the construction on air tightness and humidity in the walls. An economic analysis comparing using a concrete frame or the studied CLT frame for a three storey building shows that it is probably more expensive to build with CLT. For buildings higher than three floors, the CLT frame has economic advantages, mainly because of the shorter building time compared to using concrete for the frame. In this analysis, no considerations have been taken to differences in the influence on the environment or the global climate between the two construction methods.
Resumo:
With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.
Resumo:
The newly adopted energy efficiency directive (2012/27/EU) highlights the importance of energy efficiency in reaching the Union’s 2020 targets. The directive commits member states to defining national energy efficiency targets (art. 3), achieving yearly energy savings of 1.5% of the annual energy sales through the energy efficiency obligation scheme (art. 7), and providing a long-term strategy for the building sector that aims at a 3% refurbishment rate for public buildings (art. 4+5). Buildings currently account for 40% of energy use in most countries, putting them among the largest end-use sectors. This report takes a closer look at the best practices for implementing increasing energy efficiency in different regions and countries in Europe. The final aim is to identify some policy tools to be suggested to the region of Dalarna (Dalarna having been chosen as the pilot county in Sweden) as a means of implementing energy efficiency in the building sector. The final objective is to give analysts and decision-makers a better analytical foundation to explore future policy development in the area of buildings to be proposed and tested at the regional level in Dalarna and later at the national level in Sweden.