995 resultados para Depth, reference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receiver function method applied in researching the discontinuities in upper mantle was systematically studied in this paper. Using the theoretical receiver functions, the characteristics of P410S and P660S phases were analyzed, and the influencing factors for detection of these phases were discussed. The stability of receiver function was studied, and a new computational method of receiver function, RFSSMS (Receiver Function of Stack and Smooth of Multi seismic-records at a Single station), was put forward. We built initial reference velocity model for the media beneath each of 18 seismic stations respectively; then estimated the buried depths of 410-km and 660-km discontinuities(simply marked as '410' and '660') under the stations by using the arrive time differences of P410S and P660S with P. We developed a new receiver function inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion), to obtain the whole crust and upper mantle velocity structure and the depths of discontinuities beneath a station. The major works and results could be summarized as follows: (1) By analysis of the theoretical receiver functions with different velocity models and different ray parameters, we obtain the knowledge: The amplitudes of P410S and P660S phases are decreasing with the increasing of epicentral distance A , and the arrival time differences of these phases with P are shorter as A is longer. The multiple refracted and/or reflected waves yielded on Moho and the discontinuities in the crust interfere the identification of P410S. If existing LVZ under the lithosphere, some multiple waves caused by LVZ will interfere the identification of P410S. The multiple waves produced by discontinuity lied near 120km depth will mix with P410s phase in some range of epicentral distance; and the multiple waves concerned with the discontinuity lied near 210km depth will interfere the identification of P660S. The epicentral distance for P4i0s identification is limited, the upper limit is 80° . The identification of P660S is not restricted by the epicenter distance obviously. The identification of P410S and P6gos in the theoretical receiver functions is interfered weakly from the seismic wave attenuation caused by the media absorption if the Q value in a reasonable range. (2) The stability of receiver function was studied by using synthetic seismograms with different kind of noise. The results show that on the condition of high signal-noise-ratio of seismic records, the high frequency background noise and the low frequency microseism noise do not influence the calculating result of receiver function. But the media "scattering noise" influence the stability of receiver function. When the scattering effect reach some level, the identification of P4iOs and P66os is difficult in single receiver function which is yielded from only one seismic record. We provided a new method to calculate receiver function, that is, with a group of earthquake records, stacking the R and Z components respectively in the frequency domain, and weighted smooth the stacked Z component, then compute the complex spectrum ratio of R to Z. This method can improve the stability of receiver function and protrude the P4i0s and P66os in the receiver function curves. (3) 263 receiver functions were provided from 1364 three component broadband seismograms recorded at 18 stations in China and adjacent areas for the tele-earthquakes. The observed arrival time differences of P410S and P660S with P were obtained in these receiver functions. The initial velocity model for every station was built according to the prior research results. The buried depths of '410' and '660' under a station were acquired by the way of adjusting the depths of these two discontinuities in the initial velocity model until the theoretical arrival time differences of P410S and P660S with P well conformed to the observed. The results show an obvious lateral heterogeneity of buried depths of ' 410' and (660' . The depth of '410' is shallower beneath BJI, XAN, LZH and ENH, but deeper under QIZ and CHTO, and the average is 403km . The average depth of '660' is 663km, deeper under MDJ and MAJO, but shallower under QIZ and HYB. (4) For inversing the whole crust and upper mantle velocity structure, a new inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion) has- been developed here. The media beneath a station is divided into segments, then the velocity structure is inversed from receiver function from surface to deep successively. Using PGARFI, the multi reflection / refraction phases of shallower discontinuities are isolated from the first order refraction transform phase of deep discontinuity. The genetic algorithm with floating-point coding was used hi the inversion of every segment, and arithmetical crossover and non-uniform mutation technologies were employed in the genetic optimization. 10 independent inversions are completed for every segment, and 50 most excellent velocity models are selected according to the priority of fitness from all models produced in the inversion process. The final velocity structure of every segment is obtained from the weighted average of these 50 models. Before inversion, a wide range of velocity variation with depth and depth range of the main discontinuities are given according to priori knowledge. PGARFI was verified with numerical test and applied in the inversion of the velocity structure beneath HIA station down to 700km depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory and approach of the broadband teleseismic body waveform inversion are expatiated in this paper, and the defining the crust structure's methods are developed. Based on the teleseismic P-wave data, the theoretic image of the P-wave radical component is calculated via the convolution of the teleseismic P-wave vertical component and the transform function, and thereby a P-wavefrom inversion method is built. The applied results show the approach effective, stable and its resolution high. The exact and reliable teleseismic P waveforms recorded by CDSN and IRIS and its geodynamics are utilized to obtain China and its vicinage lithospheric transfer functions, this region ithospheric structure is inverted through the inversion of reliable transfer functions, the new knowledge about the deep structure of China and its vicinage is obtained, and the reliable seismological evidence is provided to reveal the geodynamic evolution processes and set up the continental collisional theory. The major studies are as follows: Two important methods to study crustal and upper mantle structure -- body wave travel-time inversion and waveform modeling are reviewed systematically. Based on ray theory, travel-time inversion is characterized by simplicity, crustal and upper mantle velocity model can be obtained by using 1-D travel-time inversion preliminary, which introduces the reference model for studying focal location, focal mechanism, and fine structure of crustal and upper mantle. The large-scale lateral inhomogeneity of crustal and upper mantle can be obtained by three-dimensional t ravel-time seismic tomography. Based on elastic dynamics, through the fitting between theoretical seismogram and observed seismogram, waveform modeling can interpret the detail waveform and further uncover one-dimensional fine structure and lateral variation of crustal and upper mantle, especially the media characteristics of singular zones of ray. Whatever travel-time inversion and waveform modeling is supposed under certain approximate conditions, with respective advantages and disadvantages, and provide convincing structure information for elucidating physical and chemical features and geodynamic processes of crustal and upper mantle. Because the direct wave, surface wave, and refraction wave have lower resolution in investigating seismic velocity transitional zone, which is inadequate to study seismic discontinuities. On the contrary, both the converse and reflected wave, which sample the discontinuities directly, must be carefully picked up from seismogram to constrain the velocity transitional zones. Not only can the converse wave and reflected wave study the crustal structure, but also investigate the upper mantle discontinuities. There are a number of global and regional seismic discontinuities in the crustal and upper mantle, which plays a significant role in understanding physical and chemical properties and geodynamic processes of crustal and upper mantle. The broadband teleseismic P waveform inversion is studied particularly. The teleseismic P waveforms contain a lot of information related to source time function, near-source structure, propagation effect through the mantle, receiver structure, and instrument response, receiver function is isolated form teleseismic P waveform through the vector rotation of horizontal components into ray direction and the deconvolution of vertical component from the radial and tangential components of ground motion, the resulting time series is dominated by local receiver structure effect, and is hardly irrelevant to source and deep mantle effects. Receiver function is horizontal response, which eliminate multiple P wave reflection and retain direct wave and P-S converted waves, and is sensitive to the vertical variation of S wave velocity. Velocity structure beneath a seismic station has different response to radial and vertical component of an accident teleseismic P wave. To avoid the limits caused by a simplified assumption on the vertical response, the receiver function method is mended. In the frequency domain, the transfer function is showed by the ratio of radical response and vertical response of the media to P wave. In the time domain, the radial synthetic waveform can be obtained by the convolution of the transfer function with the vertical wave. In order to overcome the numerical instability, generalized reflection and transmission coefficient matrix method is applied to calculate the synthetic waveform so that all multi-reflection and phase conversion response can be included. A new inversion method, VFSA-LM method, is used in this study, which successfully combines very fast simulated annealing method (VFSA) with damped least square inversion method (LM). Synthetic waveform inversion test confirms its effectiveness and efficiency. Broadband teleseismic P waveform inversion is applied in lithospheric velocity study of China and its vicinage. According to the data of high quality CDSN and IRIS, we obtained an outline map showing the distribution of Asian continental crustal thickness. Based on these results gained, the features of distribution of the crustal thickness and outline of crustal structure under the Asian continent have been analyzed and studied. Finally, this paper advances the principal characteristics of the Asian continental crust. There exist four vast areas of relatively minor variations in the crustal thickness, namely, northern, eastern southern and central areas of Asian crust. As a byproduct, the earthquake location is discussed, Which is a basic issue in seismology. Because of the strong trade-off between the assumed initial time and focal depth and the nonlinear of the inversion problems, this issue is not settled at all. Aimed at the problem, a new earthquake location method named SAMS method is presented, In which, the objective function is the absolute value of the remnants of travel times together with the arrival times and use the Fast Simulated Annealing method is used to inverse. Applied in the Chi-Chi event relocation of Taiwan occurred on Sep 21, 2000, the results show that the SAMS method not only can reduce the effects of the trade-off between the initial time and focal depth, but can get better stability and resolving power. At the end of the paper, the inverse Q filtering method for compensating attenuation and frequency dispersion used in the seismic section of depth domain is discussed. According to the forward and inverse results of synthesized seismic records, our Q filtrating operator of the depth domain is consistent with the seismic laws in the absorbing media, which not only considers the effect of the media absorbing of the waves, but also fits the deformation laws, namely the frequency dispersion of the body wave. Two post stacked profiles about 60KM, a neritic area of China processed, the result shows that after the forward Q filtering of the depth domain, the wide of the wavelet of the middle and deep layers is compressed, the resolution and signal noise ratio are enhanced, and the primary sharp and energy distribution of the profile are retained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Circum-Bohai region (112°~124°E, 34°~42°N ), there exists rich gas-petroleum while inner-plate seismic activity is robust. Although the tectonic structure of this region is very complicated, plenty of geological, geophysical and geochemical researches have been carried out.In this paper, guided by the ideas of "One, Two, Three and Many" and "The depth controls the shallow, the regional constrains the local", I fully take advantage of previous results so as to establish a general image of this region. After collecting the arrival-time of P-wave phases of local events and tele-seismic events recorded by the stations within this region from 1966 to 2004, I process all these data and build an initial model. Then, a tomography image of crust and upper-mantle of this region is obtained. With reference to previous results, we compare the image of various depths and five cross-profiles traverse this region along different direction. And finally, a discussion and conclusion is made.The principle contents is listed as below: 1) in the first chapter, the purpose and meaning of this thesis, the advance in seismic tomography, and the research contents and blue-print is stated; 2) in the second chapter, I introduce the regional geological setting of Circum-Bohai region, describe the tectonic and evolutionary characteristics of principle tectonic units, including Bohai Bay Basin, Yanshan Fold Zone, Taihangshan Uplifted Zone, Jiao-Niao Uplifted Zone and Luxi Uplifted Zone, and primary deep faults; 3) In the third chapter, the previous geophysical researches, i.e., gravity and geomagnetic characters, geothermal flow, seismic activity, physical character of rocks, deep seismic sounding, and previous seismic tomography, are discussed; 4) in the fourth chapter, the fundamental theory and approach of seismic tomography is introduced; 5) in the fifth chapter, the technology and approaches used in this thesis, including collecting and pre-processing of data, the establishment of initial velocity model and relocation of all events; 6) in the sixth chapter, I discuss and analyze the tomography image of various depth and five cross-sections; 7)in the seventh chapter, I make a conclusion of the results, state the existing problems and possible solutions.